Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-02T18:53:07.490Z Has data issue: false hasContentIssue false

Physical Processes in Star–Gas Systems

Published online by Cambridge University Press:  05 March 2013

R. Spurzem*
Affiliation:
Astronomisches Rechen-Institut, 69120 Heidelberg, Germany
P. Berczik
Affiliation:
Astronomisches Rechen-Institut, 69120 Heidelberg, Germany Main Astronomical Observatory of Ukrainian National Academy of Sciences, 03680 Kiev, Ukraine
G. Hensler
Affiliation:
Institut für Theoretische Physik und Astrophysik, Universität Kiel, 24098 Kiel, Germany
Ch. Theis
Affiliation:
Institut für Theoretische Physik und Astrophysik, Universität Kiel, 24098 Kiel, Germany
P. Amaro-Seoane
Affiliation:
Astronomisches Rechen-Institut, 69120 Heidelberg, Germany
M. Freitag
Affiliation:
Astronomisches Rechen-Institut, 69120 Heidelberg, Germany
A. Just
Affiliation:
Astronomisches Rechen-Institut, 69120 Heidelberg, Germany
*
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We first present a recently developed three-dimensional chemodynamic code for galaxy evolution from the Kiev–Kiel collaboration. It follows the evolution of all components of a galaxy, such as dark matter, stars, molecular clouds and diffuse interstellar matter. Dark matter and stars are treated as collisionless N-body systems. The interstellar matter is numerically described by a smoothed particle hydrodynamics approach for the diffuse (hot) gas and a sticky particle scheme for the (cool) molecular clouds. Physical processes, such as star formation, stellar death, or condensation and evaporation processes of clouds interacting with the ISM are described locally. An example application of the model to a star forming dwarf galaxy will be shown for comparison with other codes. Secondly, we will discuss new kinds of exotic chemodynamic processes, as they occur in dense gas–star systems in galactic nuclei, such as non-standard ‘drag’-force interactions, destructive and gas-producing stellar collisions. Their implementation in one-dimensional dynamic models of galactic nuclei is presented. Future prospects to generalise these to three dimensions are in progress and will be discussed.

Type
Research Article
Copyright
Copyright © Astronomical Society of Australia 2004

References

Abadi, M. G., Navarro, J. F., Steinmetz, M., & Eke, V. R. 2003, ApJ, 591, 499 Google Scholar
Berczik, P. 1999, A&A, 348, 371 Google Scholar
Berczik, P. 2000, Ap&SS, 271, 103 Google Scholar
Berczik, P., Hensler, G., Theis, Ch., & Spurzem, R. 2003, Ap&SS, 284, 865 Google Scholar
Bisnovatyi-Kogan, G. S., & Syunyaev, R. A. 1972, Sov. Astron., 16, 201 Google Scholar
Bromm, V., & Loeb, A. 2003, ApJ, 596, 34 CrossRefGoogle Scholar
Burkert, A. 1995, ApJ, 447, L25 CrossRefGoogle Scholar
Carraro, G., Lia, C., & Chiosi, C. 1998, MNRAS, 297, 1021 CrossRefGoogle Scholar
Cowie, L. L., McKee, C. F., & Ostriker, J. P. 1981, ApJ, 247, 908 Google Scholar
Ebisuzaki, T., et al. 2001, ApJ, 562, 19L Google Scholar
Eisenstein, D. J., & Loeb, A. 1995, ApJ, 448, L17 Google Scholar
Freitag, M., & Benz, W. 2002, A&A, 394, 345 Google Scholar
Gingold, R. A., & Monaghan, J. J. 1977, MNRAS, 181, 375 Google Scholar
Gürkan, M. A., Freitag, M., & Rasio, F. A. 2003, ApJ, 604, 632 Google Scholar
Harfst, S., Theis, Ch., & Hensler, G. 2003, Ap&SS, 284, 869 Google Scholar
Harfst, S., Theis, Ch., & Hensler, G. 2004, PASA, 21, 228 Google Scholar
Just, A., Kegel, W. H., & Deiss, B. M. 1986, A&A, 164, 337 Google Scholar
Köppen, J., Theis, Ch., & Hensler, G. 1998, A&A, 331, 524 Google Scholar
Langbein, T., Spurzem, R., Fricke, K. J., & Yorke, H. W. 1990, A&A 227, 333 Google Scholar
Louis, P. D., & Spurzem, R. 1991, MNRAS, 251, 408 Google Scholar
Lucy, L. 1977, AJ, 82, 1013 Google Scholar
Mihos, J. C., & Hernquist, L. 1996, ApJ, 464, 641 Google Scholar
Miyamoto, M., & Nagai, R. 1975, PASJ, 27, 533 Google Scholar
Monaghan, J. J. 1992, ARA&A, 30, 543 Google Scholar
Nakasato, N. 2004, PASA, 21, 171 Google Scholar
Nakasato, N., & Nomoto, K. 2003, ApJ, 588, 842 Google Scholar
Navarro, J. F., & White, S. D. M. 1993, MNRAS, 265, 271 Google Scholar
Rasio, F. A., Freitag, M., & Gürkan, M. A. 2003, in Carnegie Observatories Astrophysics Series, Vol. 1: Coevolution of Black Holes and Galaxies, ed. L. C. Ho (Cambridge: Cambridge Univ. Press), p. 138 Google Scholar
Samland, M. 2004, PASA, 21, 175 Google Scholar
Samland, M., & Gerhard, O. E. 2003, A&A, 399, 961 Google Scholar
Samland, M., Hensler, G., & Theis, Ch. 1997, ApJ, 476, 544 Google Scholar
Semelin, B., & Combes, F. 2002, A&A, 388, 826 Google Scholar
Springel, V., Yoshida, N., & White, S. D. M. 2001, NewA, 6, 79 CrossRefGoogle Scholar
Steinmetz, M., & Navarro, J. F. 1999, ApJ, 513, 555 Google Scholar
Thacker, R. J., Tittley, E. R., Pearce, F. R., Couchman, H. M. P., & Thomas, P. A. 2000, MNRAS, 319, 619 Google Scholar
Theis, Ch., & Hensler, G. 1993, A&A, 280, 85 Google Scholar
Theis, Ch., Burkert, A., & Hensler, G. 1992, A&A, 265, 465 Google Scholar
Zoltán, H., & Loeb, A. 2001, ApJ 552, 459 Google Scholar