Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T08:22:31.042Z Has data issue: false hasContentIssue false

Physical Parameters of SDSS Stars, the Nature of the SDSS ‘Ring around the Galaxy’, and the SEGUE Project

Published online by Cambridge University Press:  05 March 2013

Timothy C. Beers*
Affiliation:
Dept. of Physics & Astronomy, Michigan State University, East Lansing, MI 48824, USA
Carlos Allende Prieto
Affiliation:
University of Texas at Austin, Austin, TX 78712, USA
Ronald Wilhelm
Affiliation:
Dept. of Physics, Texas Tech University, Lubbock, TX 79409, USA
Brian Yanny
Affiliation:
Fermi National Accelerator Laboratory, Batavia, IL 60510, USA
Heidi Newberg
Affiliation:
Dept. of Physics & Astronomy, Rensselaer Polytechnical Institute, Troy, NY 12180, USA
*
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Although the Sloan Digital Sky Survey (SDSS) was primarily envisioned as a tool for understanding the nature of the ‘high redshift’ universe, significant discoveries have already been made at lower redshift, z ∼ 0, through studies of stars in the Milky Way galaxy. We have begun to explore the nature of the Milky Way by detailed investigation of the publicly accessible SDSS archive, using spectroscopically targeted stars of special interest (e.g. field horizontal-branch stars, carbon-enhanced stars, and F- and G-type turnoff stars), as well as the stars originally selected as photometric and reddening standards. The first step is to use the SDSS data (which includes independently calibrated five-band photometry and spectrophotometry of individual stars) to derive reliable estimates of the stellar physical parameters, such as Teff, log g, and [Fe/H], for stars that have been observed to date. Of particular interest, at present, are the stars that are apparently associated with the Monoceros Stream (also known as the SDSS ‘Ring around the Galaxy’), for which we report derived metallicities. The techniques we have developed for derivation of the physical parameters for these stars are presently being applied to other stars in the SDSS database, including the Early Data Release (EDR), as well as the first official public database, DR-1. Here we report on the progress made to date, and comment on what might be explored in the near future from a dedicated extension of the SDSS survey (SEGUE) that specifically targets stars in the Milky Way.

Type
Research Article
Copyright
Copyright © Astronomical Society of Australia 2004

References

Abazajian, K., et al. 2003, AJ, 126, 2081 Google Scholar
Allende Prieto, C., Beers, T. C., Li, Y., Newberg, H. J., Wilhelm, R., & Yanny, B. 2003, in Carnegie Observatories Astrophysics Series Vol 4, Origin and Evolution of the Elements, eds. A. McWilliam, & M. Rauch (Pasadena: Carnegie Observatories), 1 Google Scholar
Alonso, A., Arribas, S., & Martinez-Roger, C. 1996, A & A, 313, 873 Google Scholar
Alonso, A., Arribas, S., & Martinez-Roger, C. 1999, A & AS, 140, 261 Google Scholar
Bahcall, J. N., & Soneira, R. M. 1984, ApJS, 55, 67 Google Scholar
Beers, T. C. 1999, in Third Stromlo Symposium: The Galactic Halo, eds. B. Gibson, T. Axelrod, & M. Putman (San Francisco: ASP), 165, p. 206 Google Scholar
Beers, T. C., Preston, G. W., & Shectman, S. A. 1992, AJ, 103, 1987 Google Scholar
Beers, T. C., Rossi, S., Norris, J. E., Ryan, S. G., & Shefler, T. 1999, AJ, 117, 981 Google Scholar
Beers, T. C., Drilling, J. S., Rossi, S., Chiba, M., Rhee, J., Fuhrmeister, B., Norris, J. E., & von Hippel, T. 2002, AJ, 124, 931 CrossRefGoogle Scholar
Blackwell, D. E., Shallis, M. J., & Selby, M. J. 1979, MNRAS, 188, 847 Google Scholar
Carroll, D.L. 1999, FORTRAN Genetic Algorithm Driver, http://cuaerospace.com/carroll/ga.html Google Scholar
Crane, J. D., Majewski, S. R., Rocha-Pinto, H. J., Frinchaboy, P. M., Skrutskie, M. F., & Law, D. R. 2003, ApJ, 594, L119 Google Scholar
Fitzpatrick, E. L. 1999, PASP, 111, 63 Google Scholar
Frinchaboy, P. M., Majewski, S. R., Crane, J. D., Reid, I. N., Rocha-Pinto, H. J., Phelps, R. L., Patterson, R. J., & Munoz, R. R. 2004, ApJ, 602L, 21 Google Scholar
Gunn, J. E., et al. 1998, AJ, 116, 3040 Google Scholar
Helmi, A., Navarro, J. F., Meza, A., Steinmetz, M., & Eke, V. R. 2003a, ApJ, 592, L25 Google Scholar
Helmi, A., Ivezic, Z., Prada, F., Pentericci, L., Rockosi, C. M., Schneider, D. P., Grebel, E. K., Harbeck, D., Lupton, R. H., Gunn, J. E., Knapp, G. R., Strauss, M. A., & Brinkmann, J. 2003b, ApJ, 586, 195 Google Scholar
Ibata, R. A., Irwin, M. J., Lewis, G. F., Ferguson, A. M. N., & Tanvir, N. 2003, MNRAS, 340, L21 Google Scholar
Kurucz, R. L. 1993, ATLAS9 Stellar Atmosphere Programs and 2 km/s grid. Kurucz CD-ROM No. 12 (Cambridge, MA: SAO)Google Scholar
Martin, N. F., Ibata, R. A., Bellazzini, M., Irwin, M. J., Lewis, G. F., & Dehnen, W. 2004, MNRAS, 348, 12 Google Scholar
Nelder, J., & Mead, R. 1965, Computer Journal, 7, 308 Google Scholar
Perryman, M. A. C. 2002, in Proceedings of the Les Houches School, eds. O. Bienayme, & C. Truron, EAS Pub Ser, Vol 2, p. 3 Google Scholar
Robin, A. C., Reyle, C., Derriere, S., & Picaud, S. 2003, A&A, 409, 523 Google Scholar
Rocha-Pinto, H. J., Majewski, S. R., Skutskie, M. F., & Crane, J. D. 2003, ApJ, L115 Google Scholar
Rong, J., Buser, R., & Karaali, S. 2001, A & A, 365, 431 Google Scholar
Schlegel, D. J., Finkbeiner, D. P., & Davis, M. 1998, ApJ, 500, 525 CrossRefGoogle Scholar
Steinmetz, M. 2003, in GAIA Spectroscopy: Science and Technology, ed. U. Munari (San Francisco: ASP Conf Ser), 298, p. 381 Google Scholar
Stoughton, C., et al. 2002, AJ, 123, 485 Google Scholar
Wilhelm, R., Beers, T. C., & Gray, R. O. 1999, AJ, 117, 2308 Google Scholar
Yanny, B., et al. 2003, ApJ, 588, 824 Google Scholar
York, D. G., et al. 2000, AJ, 120, 1579 Google Scholar