Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-02T21:29:51.943Z Has data issue: false hasContentIssue false

The Origin and Composition of Pluto and Charon: Chemically Uniform Models

Published online by Cambridge University Press:  25 April 2016

A.J.R. Prentice*
Affiliation:
Department of Mathematics, Monash University, Clayton, Vic 3168

Abstract

Observations of the Pluto-Charon system using the Hubble Space Telescope are soon to provide another test of the modern Laplacian theory of solar system origin. According to this theory, Pluto, Charon and Neptune’s moon Triton are condensed remnants of the gas ring which was shed by the proto-solar cloud at Neptune’s orbit, and from which Neptune formed. Each body should have the same bulk chemical composition provided that the influence of secondary events such as physical collision can be neglected. Here we report a model for the time-dependent, surface-catalysed production of CH4, solid carbon C(s) and CO2 within the outer layers of the proto-solar cloud. This model is used to determine the condensate mix which best fits the Voyager 2 spacecraft measurements of Triton’s mean density. We suggest that Triton is a chemically homogeneous structure consisting, by mass, of 44.2% anhydrous rock, 2.1% graphite, 33.0% water ice and 20.7% dry ice (i.e., solid CO2 ice, of which a fraction nearly 2/3 is present as the clathrate hydrate CO2·5.75 H2O). On the basis of this composition, the individual mean densities of Pluto and Charon are predicted to be 2.02 ± 0.02 g/cm3 and 1.94 ± 0.02 g/cm3, respectively, assuming a mean surface temperature of 35 K. The mean density of the combined system is predicted to be 2.01 ± 0.02 g/cm3.

Type
Solar and Solar System
Copyright
Copyright © Astronomical Society of Australia 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anders, E. and Ebihara, M., 1982, Geochim. Cosmochim. Acta, 46, 2363.Google Scholar
Anders, E. and Grevesse, N., 1989, Geochim. Cosmochim. Acta, 53, 197.Google Scholar
Anderson, J.D., Asmar, S.W., Campbell, J.K., Jacobson, R.A., Krischer, T.P., Kursinski, E.R., Lau, E.L. and Morabito, D.D., Gravitational Parameters for Neptune and Triton, Neptune-Triton Conference, Tuscon, Arizona, 1992.Google Scholar
Buie, M.W., Tholen, D.J. and Horne, K., 1992, Icarus, 97, 211.Google Scholar
Cruikshank, D.P., Owen, T.C., Geballe, T.R., Schmitt, B., DeBergh, C., Maillard, J-P., Lutz, B.L. and Brown, R.H., 1991, Bull. Amer. Astron. Soc., 23, 1208.Google Scholar
Davies, M.E., Rogers, P.V. and Colvin, T.R., 1991, J. Geophys. Res., 96, 15675.CrossRefGoogle Scholar
Dwyer, D.J. and Somorjai, G.A., 1978, J. Catalysis, 52, 291.Google Scholar
Ellsworth, K. and Schubert, G., 1983, Icarus, 54, 490.Google Scholar
Fegley, B. and Prinn, R.G., 1989, in The Formation and Evolution of Planetary Systems, H.A. Weaver and L. Danly (eds), CUP p. 171.Google Scholar
Goldreich, P., Murray, N., Longaretti, P.Y. and Banfield, D., 1989, Science, 245,500.Google Scholar
Grevesse, N., Lambert, D. L., Sauval, A. J., van, Dishoeck E. F., Farmer, C.B. and Norton, R. H., 1991, Astron. Astrophys. 242, 488.Google Scholar
Grevesse, N., Lambert, D.L., Sauval, A.J., van, Dishoeck E.F., Farmer, C.B. and Norton, R.H., 1991, Astron. Astrophys. 242, 488.Google Scholar
Grundy, W.M. and Fink, U., 1991, Icarus, 93, 169.Google Scholar
Jacobson, R.A., Riedel, J.E. and Taylor, A.H., 1991, Astron. Astrophys., 247, 565.Google Scholar
Lewis, J.S., Barshay, S.S. and Noyes, B., 1979, Icarus, 37, 190.Google Scholar
Lewis, J.S. and Prinn, R.G., 1980, Astrophys. J., 238, 357.Google Scholar
Lin, D.N.C., 1981, Mon. Not. Roy. astra. Soc., 197, 1081.Google Scholar
Lyttleton, R.A., 1936, Mon. Not. Roy. astro. Soc., 97, 108.CrossRefGoogle Scholar
McKinnon, W.B., 1984, Nature, 311, 355.Google Scholar
McKinnon, W.B., 1989, Astrophys. J., 344, L41.Google Scholar
McKinnon, W.B. and Mueller, S., 1988, Nature, 335, 240.Google Scholar
McKinnon, W.B. and Mueller, S., 1989, Geophys. Res. Letts., 16, 591.Google Scholar
Mignard, E., 1981, Astron. Astrophys., 96, L1.Google Scholar
Monaghan, J.J., 1992, Proc. Astron. Soc. Aust., 9, 240.Google Scholar
Morgan, C., 1992, Southern Astronomy, 5, 17.Google Scholar
Norris, T.L., 1980, Earth. Plan. Sci. Letts., 47, 43.Google Scholar
Null, G.W., Owen, W.M. and Synnott, S.P., 1992, Bull. Amer. Astron. Soc., 24, 962.Google Scholar
Owen, T.C., Geballe, T.R., DeBergh, C., Young, L.A., Elliott, J.L. and Cruikshank, D.P., 1992, IAU Circ. No. 5532.Google Scholar
Prentice, A.J.R., 1972, Proc. Astron. Soc. Aust., 2, 152.Google Scholar
Prentice, A.J.R., 1973, Astron. Astrophys., 27, 237.Google Scholar
Prentice, A.J.R., 1977, Proc. Astron. Soc. Aust., 3, 172.Google Scholar
Prentice, A.J.R., 1978a, in The Origin of the Solar System, Dermott, S.F. (ed), Wiley, London, p. 111.Google Scholar
Prentice, A.J.R., 1978b, Moon and Planets, 19, 341.CrossRefGoogle Scholar
Prentice, A.J.R., 1981, Proc. Astron. Soc. Aust., 4, 164.Google Scholar
Prentice, A.J.R., 1984, Earth, Moon and Planets, 30, 209.Google Scholar
Prentice, A.J.R., 1986, Phys. Letts., 80A, 205.Google Scholar
Prentice, A.J.R., 1989, Phys. Letts. A, 140, 265.Google Scholar
Prentice, A.J.R., 1990, Proc. Astron. Soc. Aust., 8, 364.Google Scholar
Prentice, A.J.R., 1991a, Proc. Astron. Soc. Aust., 9, 321.Google Scholar
Prentice, A.J.R., 1991b, Bull. Amer. Astron. Soc., 23, 1232.Google Scholar
Prentice, A.J.R., 1991c, Search, 22, 101.Google Scholar
Prentice, A.J.R., 1992, Bull. Amer. Astron. Soc., 24, 963.Google Scholar
Simonelli, D.P., Pollack, J.B., McKay, C., Reynolds, R.T. and Summers, A.L., 1989, Icarus, 82, 1.CrossRefGoogle Scholar
Sykes, M.V., Cutri, R.M., Lebofsky, L.A. and Binzel, R.P., 1987, Science, 237, 1336.Google Scholar
Tancredi, G. and Fernandez, J.A., 1991, Icarus, 93, 298.Google Scholar
Tholen, D.J. and Buie, M.W., 1990, Bull. Amer. Astron. Soc., 22, 1129.Google Scholar
Trafton, L., 1980, Icarus, 44, 53.Google Scholar
Trafton, L., Stern, S.A. and Gladstone, G.R., 1988, Icarus, 74, 108.Google Scholar
Van, Ho|S. and Harriott, P., 1980, J. Catalysis, 64, 272.Google Scholar
Vannice, M.A., 1975, J. Catalysis, 37, 449.Google Scholar
Yelle, R.V. and Lunine, J.I., 1989, Nature, 339, 288.Google Scholar