Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-23T20:33:37.306Z Has data issue: false hasContentIssue false

Operation of the Near Infrared Sky Monitor at the South Pole

Published online by Cambridge University Press:  05 March 2013

J. S. Lawrence
Affiliation:
School of Physics, University of New South Wales, NSW 2052, Australia
M. C. B. Ashley
Affiliation:
School of Physics, University of New South Wales, NSW 2052, Australia
M. G. Burton
Affiliation:
School of Physics, University of New South Wales, NSW 2052, Australia
P. G. Calisse
Affiliation:
School of Physics, University of New South Wales, NSW 2052, Australia
J. R. Everett
Affiliation:
School of Physics, University of New South Wales, NSW 2052, Australia
R. J. Pernic
Affiliation:
Yerkes Observatory, The University of Chicago, Williams Bay, Wisconsin 53191, USA
A. Phillips
Affiliation:
School of Physics, University of New South Wales, NSW 2052, Australia
J. W. V. Storey
Affiliation:
School of Physics, University of New South Wales, NSW 2052, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The near infrared sky spectral brightness has been measured at the South Pole with the Near Infrared Sky Monitor (NISM) throughout the 2001 winter season. The sky is found to be typically more than an order of magnitude darker than at temperate latitude sites, consistent with previous South Pole observations. Reliable robotic operation of the NISM, a low power, autonomous instrument, has been demonstrated throughout the Antarctic winter. Data analysis yields a median winter value of the 2.4μm (Kdark) sky spectral brightness of ˜120μJy arcsec−2 and an average of 210 ± 80μJy arcsec−2. The 75%, 50%, and 25% quartile values are 270 ± 100, 155 ± 60, and 80 ± 30μJy arcsec−2, respectively.

Type
Research Article
Copyright
Copyright © Astronomical Society of Australia

References

Ashley, M. C. B., Burton, M. G., Lloyd, J. P., & Storey, J. W. V. 1995, Proc. SPIE, 2552, 33 CrossRefGoogle Scholar
Ashley, M. C. B., Burton, M. G., Storey, J. W. V., Lloyd, J. P., Bally, J., Briggs, J. W., & Harper, D. A. 1996, PASP, 108, 721 CrossRefGoogle Scholar
Burton, M. G., Storey, J. W. V., & Ashley, M. C. B. 2001, PASA, 18, 158 Google Scholar
Burton, M. G., et al. 1994, PASA, 11, 127 Google Scholar
Chamberlain, M. A., Ashley, M. C. B., Burton, M. G.,Phillips, A., Storey, J. W. V., & Harper, D. A. 2000, ApJ, 535, 501 Google Scholar
CMDL 2001, Climate Monitoring & Diagnostics Laboratory, http://www.cmdl.noaa.gov/met/ Google Scholar
Hereld, M. 1994, ExA, 3, 87 Google Scholar
Hoffman, W., Lemke, D., & Thum, C. 1977, ApOpt, 16, 3125 Google Scholar
Jacobson, M. Z. 1999, Fundamentals of Atmospheric Modeling (Cambridge: Cambridge Univeristy Press)Google Scholar
Lang, K. R. 1980, Astrophysical Formulae (New York: Springer-Verlag)Google Scholar
Leinhert, C., et al. 1998, A&A Suppl. Series, 127, 1 Google Scholar
Mandolesi, N., et al. 1998, A&A, 331, 463 Google Scholar
Matsumoto, T., Akiba, M., & Murakami, H. 1988, ApJ, 332, 575 Google Scholar
Matsumoto, T., Matsuura, S., & Noda, M. 1994, PASP, 106, 1217 Google Scholar
Matsumoto, T., Kawada, M., Murakami, H., Noda, M., Matsuura, S., Tanaka, M., & Narita, K. 1996, PASJ, 48, L47 Google Scholar
Matsuura, S., Kawada, M., Matsuhara, H., Matsumoto, T., Noda, M., Tanaka, M., & Bock, J. J. 1994, PASP, 106, 770 Google Scholar
McKewon, J. M., & Phillips, L. F. 1975, Chemistryof the Atmosphere (London: Edward Arnold)Google Scholar
Nguyen, H. T., Rauscher, B. J., Severson, S. A., Hereld, M., Harper, D. A., Loewenstein, R. F., Mrozek, F., & Pernic, R. J. 1996, PASP, 108, 718 Google Scholar
Noda, M., Chritov, V. V., Matsuhara, H., Matsumoto, T., Noguchi, K., Sato, S., & Murakami, H. 1992, ApJ, 391, 456 Google Scholar
Phillips, A., Burton, M. G., Ashley, M. C. B., Storey, J. W. V., Lloyd, J. P., Harper, D. A., & Bally, J. 1999, ApJ, 527, 1009 CrossRefGoogle Scholar
Rothman, L. S., et al. 1998, JQSRT, 60, 665 CrossRefGoogle Scholar
Smith, C. H., & Harper, D. A. 1998, PASP, 110, 747 Google Scholar
Storey, J. W. V. 1998, in Astrophysics from Antarctica, ASP Conf. Series 141, ed. G. Novak & R. H. Landsberg (San Fransisco: ASP), 313 Google Scholar
Storey, J. W. V., Ashley, M. C. B., & Burton, M. G. 1996, PASA, 13, 35 Google Scholar
Storey, J. W. V., Ashley, M. C. B., Boccas, M., Phillips, M. A., & Schinckel, A. E. T. 1999, PASP, 760, 765 Google Scholar
Townes, C. H., & Melnick, G. 1990, PASP, 102, 357 Google Scholar
Valenziano, L., Cavaliere, F., & Miriametro, A. 1997, ExA, 7, 421 Google Scholar