Hostname: page-component-669899f699-tpknm Total loading time: 0 Render date: 2025-04-25T15:32:05.776Z Has data issue: false hasContentIssue false

On the existence of ‘Maia variables’

Published online by Cambridge University Press:  05 November 2024

Filiz Kahraman Aliçavuş*
Affiliation:
Physics Department, Science Faculty, Çanakkale Onsekiz Mart University, Canakkale, Türkiye Astrophysics Research Center and Ulupınar Observatory, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
Gerald Handler*
Affiliation:
Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, Warsaw, Poland
Sowgata Chowdhury
Affiliation:
Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, Warsaw, Poland
Ewa Niemczura
Affiliation:
Astronomical Institute, University of Wrocław, Wrocław, Poland
Rahul Jayaraman
Affiliation:
Department of Physics, M.I.T., Cambridge, MA, USA Kavli Institute for Astrophysics and Space Reserch, M.I.T., Cambridge, MA, USA
Peter De Cat
Affiliation:
Royal Observatory of Belgium, Brussel, Belgium
Dogus Ozuyar
Affiliation:
Department of Astronomy and Space Sciences, Faculty of Science, Ankara University, Tandogan, Ankara, Türkiye
Fahri Aliçavuş
Affiliation:
Physics Department, Science Faculty, Çanakkale Onsekiz Mart University, Canakkale, Türkiye Astrophysics Research Center and Ulupınar Observatory, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
*
Corresponding authors: F. Kahraman Aliçavuş & G. Handler, Emails: filizkahraman01@gmail.com, gerald@camk.edu.pl.
Corresponding authors: F. Kahraman Aliçavuş & G. Handler, Emails: filizkahraman01@gmail.com, gerald@camk.edu.pl.

Abstract

There are different classes of pulsating stars in the H-R diagram. While many of those classes are undisputed, some remain a mystery such as the objects historically called ‘Maia variables’. Whereas the presence of such a class was suggested seven decades ago, no pulsational driving mechanism is known that could excite short-period oscillations in these late B to early A-type stars. Alternative hypotheses that would render the reports of variability of those stars erroneous have been proposed such as incorrect effective temperatures, binarity or rapid rotation, but no certain conclusions have been reached yet. Therefore, the existence of these variables as a homogeneous class of pulsating star is still under discussion. Meanwhile, many new candidates of these variables have been claimed especially by using photometric observations of space telescopes. In this study, we examined 31 objects that are alleged members of this hypothetical group and carried out detailed spectroscopic and photometric analyses to test the proposed hypotheses for their cause of variability. The $T_\textrm{eff}$, $\log g$, $v \sin i$, and chemical abundances of the targets were determined and the TESS photometric data were examined. As a result, we found that most of these targets are located inside the $\delta$ Scuti, $\beta$ Cephei, or SPB star instability strips, a few show evidence for binarity and others for rapid rotation. We give arguments that none of the apparently rapid pulsations in our targets is caused by a star outside any known instability strip. By extrapolation, we argue that most stars proposed as pulsators outside well-established instability domains are misclassified. Hence there is no sufficient evidence justifying the existence of a class of pulsating stars formerly known as the ‘Maia variables’.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Astronomical Society of Australia

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

1997, ESA Special Publication, Vol. 1200, The HIPPARCOS and TYCHOcatalogues. Astrometric and photometric star catalogues derived from the ESA HIPPARCOS Space Astrometry MissionGoogle Scholar
Aerts, C., Christensen-Dalsgaard, J., & Kurtz, D. W. 2010, AsteroseismologyCrossRefGoogle Scholar
Aerts, C., & Kolenberg, K. 2005, A&A, 431, 615CrossRefGoogle Scholar
Aerts, C., & Tkachenko, A. 2023, arXiv e-prints, arXiv:2311.08453 Google Scholar
Amôres, E. B., & Lépine, J. R. D. 2005, AJ, 130, 659CrossRefGoogle Scholar
Antoci, V., et al. 2014, ApJ, 796, 118CrossRefGoogle Scholar
Asplund, M., Grevesse, N., Sauval, A. J., & Scott, P. 2009, ARA&A, 47, 481CrossRefGoogle Scholar
Baker, N., & Kippenhahn, R. 1962, ZAp, 54, 114CrossRefGoogle Scholar
Balega, Y. Y., et al. 2012, AstBu, 67, 44CrossRefGoogle Scholar
Balona, L. A. 2023, FASS, 10, 1266750CrossRefGoogle Scholar
Balona, L. A., & Ozuyar, D. 2020, MNRAS, 493, 5871CrossRefGoogle Scholar
Balona, L. A., et al. 2016, MNRAS, 460, 1318CrossRefGoogle Scholar
Baran, A. S., & Koen, C. 2021, AcA, 71, 113Google Scholar
Bowman, D. M., et al. 2019, NatAs, 3, 760Google Scholar
Brown, T. M., Latham, D. W., Everett, M. E., & Esquerdo, G. A. 2011, AJ, 142, 112CrossRefGoogle Scholar
Catanzaro, G., Leone, F., & Dall, T. H. 2004, A&A, 425, 641CrossRefGoogle Scholar
Chang, S. W., Protopapas, P., Kim, D. W., & Byun, Y. I. 2013, AJ, 145, 132CrossRefGoogle Scholar
Charpinet, S., et al. 2019, A&A, 632, A90Google Scholar
Christophe, S., Ballot, J., Ouazzani, R. M., Antoci, V., & Salmon, S. J. A. J. 2018, A&A, 618, A47CrossRefGoogle Scholar
Cunha, M. S., Alentiev, D., Brandão, I. M., & Perraut, K. 2013, MNRAS, 436, 1639CrossRefGoogle Scholar
Degroote, P., et al. 2009, A&A, 506, 471CrossRefGoogle Scholar
Dommanget, J., & Nys, O. 1995, in Astronomical and Astrophysical Objectives of Sub-Milliarcsecond Optical Astrometry, ed. Hog, E., & Seidelmann, P. K., Vol. 166, 395CrossRefGoogle Scholar
Dziembowski, W. A., Moskalik, P., & Pamyatnykh, A. A. 1993, MNRAS, 265, 588CrossRefGoogle Scholar
Eggleton, P. P., & Tokovinin, A. A. 2008, MNRAS, 389, 869CrossRefGoogle Scholar
Fabricius, C., et al. 2002, A&A, 384, 180CrossRefGoogle Scholar
Flower, P. J. 1996, ApJ, 469, 355CrossRefGoogle Scholar
Collaboration, Gaia. 2022, VizieR Online Data Catalog, I/355Google Scholar
Collaboration, Gaia, et al. 2021, A&A, 649, A6Google Scholar
Gerbaldi, M., Floquet, M., & Hauck, B. 1985, A&A, 146, 341Google Scholar
Gray, D. F. 2008, The Observation and Analysis of Stellar Photospheres Google Scholar
Higgins, M. E., & Bell, K. J. 2022, TESS-Localize: Localize variable star signatures in TESS Photometry, Astrophysics Source Code Library, record ascl:2204.005, ascl:2204.005 Google Scholar
Holdsworth, D. L., et al. 2024, MNRAS, 527, 9548Google Scholar
Hubeny, I., & Lanz, T. 2011, Synspec: General Spectrum Synthesis Program, Astrophysics Source Code Library, record ascl:1109.022, ascl:1109.022 Google Scholar
Jackiewicz, J. 2021, FASS, 7, 102CrossRefGoogle Scholar
Kahraman Aliçavus, F., et al. 2016, MNRAS, 458, 2307Google Scholar
Kochukhov, O., et al. 2021, MNRAS, 506, 5328CrossRefGoogle Scholar
Kurtz, D. W. 2022, ARA&A, 60, 31CrossRefGoogle Scholar
Kurtz, D. W., et al. 2023, MNRAS, 521, 4765CrossRefGoogle Scholar
Kurtz, D. W., Shibahashi, H., Murphy, S. J., Bedding, T. R., & Bowman, D. M. 2015, MNRAS, 450, 3015CrossRefGoogle Scholar
Kurucz, R. 1993, ATLAS9 Stellar Atmosphere Programs and 2 km/s grid. Kurucz CD-ROM No. 13. Cambridge, 13Google Scholar
Kurucz, R. L., & Avrett, E. H. 1981, SAO Special Report, 391Google Scholar
Labadie-Bartz, J., et al. 2022, AJ, 163, 226CrossRefGoogle Scholar
Labadie-Bartz, J., et al. 2020, AJ, 160, 32CrossRefGoogle Scholar
Lanz, T., & Hubeny, I. 2007, ApJS, 169, 83CrossRefGoogle Scholar
Lehmann, H., et al. 1995, A&A, 300, 783Google Scholar
Lenz, P., & Breger, M. 2005, CoAst, 146, 53CrossRefGoogle Scholar
Lindegren, L., et al. 2018, A&A, 616, A2Google Scholar
Lindegren, L., et al. 2021, A&A, 649, A2Google Scholar
Mason, B. D., Wycoff, G. L., Hartkopf, W. I., Douglass,G. G., &Worley, C. E. 2001, AJ, 122, 3466CrossRefGoogle Scholar
McNamara, B. J. 1985, ApJ, 289, 213CrossRefGoogle Scholar
Moe, M., & Di Stefano, R. 2017, ApJS, 230, 15CrossRefGoogle Scholar
Mowlavi, N., Barblan, F., Saesen, S., & Eyer, L. 2013, A&A, 554, 108CrossRefGoogle Scholar
Mowlavi, N., et al. 2016, A&A, 595, L1CrossRefGoogle Scholar
Murphy, S. J., Bedding, T. R., Shibahashi, H., Kurtz, D. W., & Kjeldsen, H. 2014, MNRAS, 441, 2515CrossRefGoogle Scholar
Murphy, S. J., Hey, D., Van Reeth, T., &Bedding, T. R. 2019, MNRAS, 485, 2380CrossRefGoogle Scholar
Pamyatnykh, A. A. 1999, AcA, 49, 119CrossRefGoogle Scholar
Przybilla, N., Nieva, M.-F., & Butler, K. 2011, in Journal of Physics Conference Series, Vol. 328, Journal of Physics Conference Series, 012015CrossRefGoogle Scholar
Raskin, G., et al. 2011, A&A, 526, A69CrossRefGoogle Scholar
Ratnasingam, R. P., et al. 2023, A&A, 674, A134CrossRefGoogle Scholar
Ricker, G. R., et al. 2014, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 9143,Google Scholar
Saio, H., Kurtz, D. W., Murphy, S. J., Antoci, V. L., & Lee, U. 2018, MNRAS, 474, 2774CrossRefGoogle Scholar
Salmon, S. J. A. J., Montalbán, J., Reese, D. R., Dupret, M. A., & Eggenberger, P. 2014, A&A, 569, A18CrossRefGoogle Scholar
Sharma, A. N., Bedding, T. R., Saio, H., & White, T. R. 2022, MNRAS, 515, 828CrossRefGoogle Scholar
Shore, S. N., Brown, D. N., & Sonneborn, G. 1987, AJ, 94, 737CrossRefGoogle Scholar
Stankov, A., & Handler, G. 2005, ApJS, 158, 193CrossRefGoogle Scholar
Stassun, K. G., & Torres, G. 2021, ApJ, 907, L33CrossRefGoogle Scholar
Stassun, K. G., et al. 2019, AJ, 158, 138Google Scholar
Struve, O. 1955, S&T, 14, 461Google Scholar
Szewczuk, W., & Daszyńska-Daszkiewicz, J. 2017, MNRAS, 469, 13CrossRefGoogle Scholar
Telting, J. H., et al. 2014, AN, 335, 41CrossRefGoogle Scholar
Tody, D. 1986, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 627, Instrumentation in astronomy VI, ed. Crawford, D. L., 733Google Scholar
Townsend, R. H. D. 2005, MNRAS, 360, 465CrossRefGoogle Scholar
Townsend, R. H. D., Goldstein, J., & Zweibel, E. G. 2018, MNRAS, 475, 879CrossRefGoogle Scholar
Uytterhoeven, K., et al. 2011, A&A, 534, A125Google Scholar
Walczak, P., et al. 2019, MNRAS, 485, 3544CrossRefGoogle Scholar
White, T. R., et al. 2017, MNRAS, 471, 2882Google Scholar