Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T21:13:31.813Z Has data issue: false hasContentIssue false

Neural Networks and the Classification of Active Galactic Nucleus Spectra

Published online by Cambridge University Press:  25 April 2016

Daya M. Rawson
Affiliation:
Mount Stromlo and Siding Springs Observatory, Australian National University, Private Bag, Weston Creek, ACT, 2611, [email protected]
Jeremy Bailey
Affiliation:
Anglo-Australian Observatory, PO Box 296, Epping, NSW 2121, [email protected]
Paul J. Francis
Affiliation:
School of Physics, University of Melbourne, Parkville, Victoria 3052, [email protected]

Abstract

The use of artificial neural networks (ANNs) as a classifier of digital spectra is investigated. Using both simulated and real data, it is shown that neural networks can be trained to discriminate between the spectra of different classes of active galactic nucleus (AGN) with realistic sample sizes and signal-to-noise ratios. By working in the Fourier domain, neural nets can classify objects without knowledge of their redshifts.

Type
Extragalactic
Copyright
Copyright © Astronomical Society of Australia 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boroson, T. A., & Green, R. F. 1992, ApJS, 80, 109 CrossRefGoogle Scholar
Francis, P. J., Hewett, P. C, Foltz, C. B., & Chaffee, F. H. 1992, ApJ, 398, 476 CrossRefGoogle Scholar
Francis, P. J., Hewett, P. C, Foltz, C. B., Chaffee, F. H., Weymann, R. J., & Morris, S. L. 1991, ApJ, 373, 465 CrossRefGoogle Scholar
Francis, P. J., Hooper, E. J., & Impey, C. D. 1993, AJ, 106, 417.CrossRefGoogle Scholar
Gorman, R., & Sejnowski, T. J. 1988, Neural Networks, l, 75 CrossRefGoogle Scholar
Hertz, J., Krogh, A., & Palmer, R. G. 1991, Introduction to the Theory of Neural Computation (New York: Addison-Wesley)Google Scholar
Hewett, P. C, Foltz, C. B., & Chaffee, F. H. 1995, ApJ, 445, 62 Google Scholar
Hinton, G. E. 1992, Sci. Am., September, 267, 145 CrossRefGoogle Scholar
Lahav, O., et al. 1994, Science, 267, 859 CrossRefGoogle Scholar
Lahav, O., Nairn, A., Sodre, L. Jr., & Storrie-Lombardie, M. C. 1995, MNRAS, in pressGoogle Scholar
Maren, A. J., Harston, C. T., & Pap, R. 1990, Handbook of Neural Computing (New York: Academic)Google Scholar
Osterbrock, D. E. 1989, Astrophysics of Gaseous Nebulae and Active Galactic Nuclei (Mill Valley: University Science Books)CrossRefGoogle Scholar
Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. 1992, Numerical Recipes in C (Cambridge Univ. Press)Google Scholar
Rao, V. B., & Rao, N. V. 1993, C++ Neural Networks and Fuzzy Logic (New York: MIS Press)Google Scholar
Rawson, D. M. 1994, Neural Nets and Quasi-stellar Objects(Honours thesis, University of Melbourne)Google Scholar
Rayburn, D. B., et al. 1991, Neural Networks, 4, 525 CrossRefGoogle Scholar
Storrie-Lombardi, M. C., Lahav, O., Sodre, L. Jr, & Storrie-Lombardi, L. J. 1992, MNRAS, 259, 8 CrossRefGoogle Scholar
Taylor, K. 1995, in Wide Field Spectroscopy and the Distant Universe, 35th Herstmonceux Conference, ed. Maddox, S. J. & Aragon-Salamanca, A. (Singapore: World Scientific), 15 Google Scholar
van Camp, D. 1992, Sci. Am., September, 267, 170 CrossRefGoogle Scholar
von Hippel, T., Storrie-Lombardie, L. J., Storrie-Lombardi, M. C., & Irwin, M. J. 1994, MNRAS, 269, 97 CrossRefGoogle Scholar
Weymann, R. J., Morris, S. L., Foltz, C. B., & Hewett, P. C. 1991, ApJ, 373, 23 CrossRefGoogle Scholar