Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-27T14:18:00.128Z Has data issue: false hasContentIssue false

Molecular Ices as Temperature Indicators in the ISM

Published online by Cambridge University Press:  25 April 2016

R. G. Smith
Affiliation:
Department of Physics, University College, University of New South Wales, Australian Defence Force Academy, Canberra, ACT 2600
G. Robinson
Affiliation:
Department of Physics, University College, University of New South Wales, Australian Defence Force Academy, Canberra, ACT 2600
A. R. Hyland
Affiliation:
Department of Physics, University College, University of New South Wales, Australian Defence Force Academy, Canberra, ACT 2600

Abstract

Molecular ices are a common component of the dust in many molecular clouds and circumstellar shells. The most abundant molecule, H2O, has several infrared spectral features which have strongly temperature dependent shapes (FWHM) and peak wavelengths. This paper describes how a study of these features, both astronomically and in the laboratory, can lead to constraints on the temperatures of interstellar dust grains. This is demonstrated in part by comparing several astronomical spectra with laboratory spectra of H2O ice.

Type
Galactic and Stellar
Copyright
Copyright © Astronomical Society of Australia 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aitken, D.K., Roche, P.F., Smith, C.H., James, S.D. and Hough, J.H., 1988, Mon. Not. R. astr. Soc., 230, 629.CrossRefGoogle Scholar
Bergren, M.S., Schuh, D., Sceats, M.G. and Rice, S.A., 1978, Chem. Phys., 69, 3477.Google Scholar
Bertie, J.E., Labbe, H.J. and Whalley, E., 1969, J. Chem. Phys., 50,4501.CrossRefGoogle Scholar
Eiroa, C. and Hodapp, K.W., 1989, Astron. Astrophys., 210, 345.Google Scholar
Forrest, W.J., Gillett, F.C., Houck, J.R., McCarthy, J.F., Merrill, K.M., Pipher, J.L., Puetter, R.C., Russell, R.W., Soifer, B.T. and Willner, S.P., 1978, Astrophys. J., 219, 114.CrossRefGoogle Scholar
Forveille, T., Morris, M., Omont, A. and Likkel, L., 1987, Astron. Astrophys., 176, L13.Google Scholar
Hagen, W., Tielens, A.G.G.M. and Greenberg, J.M., 1981, Chem. Phys., 56, 367.CrossRefGoogle Scholar
Hyland, A.R., Smith, R.G. and Robinson, G., 1992, Proc. Astron. Soc. Aust., in press.Google Scholar
Irvine, W.M. and Pollack, J.B., 1968, Icarus, 8, 324.CrossRefGoogle Scholar
Kitta, K. and Kratschmer, W., 1983, Astron. Astrophys., 122, 105.Google Scholar
Leger, A., Gauthier, S., Defourneau, D. and Rouan, D., 1983, Astron. Astrophys., 117, 164.Google Scholar
Nakagawa, N., 1980, in Interstellar Molecules, Andrew, B.H. (ed), Reidel, Dordrecht, p. 365.CrossRefGoogle Scholar
Omont, A., Moseley, S.H., Forveille, T., Glaccum, W.J., Harvey, P.M., Likkel, , Lowenstein, R.F. and Lisse, C.M., 1990, Astrophys. J. Lett., 355, L27.CrossRefGoogle Scholar
Robinson, G., Smith, R.G. and Hyland, A.R., 1992, Mon. Not. R. astr. Soc., 256, 437.CrossRefGoogle Scholar
Roux, J.E., Wood, B.E. and Smith, A.M., 1979, AEDC Tech. Report 79-57 (AD-A74913).Google Scholar
Sandford, S.A. and Allamandola, L.J., 1988, Icarus, 76, 201.CrossRefGoogle Scholar
Sandford, S.A., Allamandola, L.J., Tielens, A.G.G.M., Sellgren, K., Tapia, M. and Pendleton, Y., 1991, Astrophys. J., 371, 607.CrossRefGoogle Scholar
Smith, R.G., Sellgren, K. and Brooke, T.Y., 1992, Mon. Not. R. astr. Soc., submitted.Google Scholar
Smith, R.G., Sellgren, K. and Tokunaga, A.T., 1988, Astrophys. J., 334, 209.CrossRefGoogle Scholar
Smith, R.G., Sellgren, K. and Tokunaga, A.T., 1989, Astrophys. J., 344, 413.CrossRefGoogle Scholar
Snell, R.L., Heyer, M.H. and Schloerb, F.P., 1989, Astrophys. J., 337,739.CrossRefGoogle Scholar
Soifer, B.T., Willner, S.P., Capps, R.W. and Rudy, R.J., 1981, Astrophys. J.,250,631.CrossRefGoogle Scholar
Tanaka, M., Sata, S., Nagata, T. and Yamamoto, T., 1990, Astrophys. J., 352, 724.CrossRefGoogle Scholar
Tielens, A.G.G.M. and Allamandola, L.J., 1987, in Physical Processes in Interstellar Clouds, Morphifl, G.E. and Scholer, M. (eds), Reidel, Dordrecht, p. 333.CrossRefGoogle Scholar
Van, Citters G.W. and Smith, R.G., 1989, Astron. J., 98, 1382.Google Scholar
Warren, S.G., 1984, Appl. Opt., 23, 1206.CrossRefGoogle Scholar
Whittet, D.C.B., 1992, in The Graduate Series in Astronomy: Dust in the Galactic Environment, Institute of Physics Publishing, London, p. 158.CrossRefGoogle Scholar
Whittet, D.C.B., Bode, M.F., Longmore, A.J., Adamson, A.J., McFadzean, A.D., Aitken, D.K. and Roche, P.F., 1988, Mon. Not. R. astr. Soc., 233, 321.CrossRefGoogle Scholar
Whittet, D.C.B., Bode, M.F., Longmore, A.J., Barnes, D.W.T. and Evans, A., 1983, Nature, 303, 218.CrossRefGoogle Scholar
Whittet, D.C.B., and Blades, J.C., 1980, Mon. Not. R. astr. Soc., 191, 309.CrossRefGoogle Scholar