Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-23T20:22:46.067Z Has data issue: false hasContentIssue false

A Model for the Formation of the Milky Way

Published online by Cambridge University Press:  05 March 2013

Markus Samland*
Affiliation:
Astronomisches Institut der Universität Basel, CH 4102 Binningen, Switzerland
*
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A new chemodynamical model for the formation and evolution of a Milky Way type galaxy is introduced. In this scenario, the galaxy forms inside a slowly growing dark matter halo in a ΛCDM cosmology. In contrast to the simple merger and collapse scenarios, the galactic mass grows continuously over a Hubble time. The whole formation scenario is simulated with a three-dimensional chemodynamical code. Within this model it is possible to follow the evolution of the galactic substructure in detail. The structure of the galactic components — halo, bulge, and disk — and the kinematical and chemical signatures of the stellar populations in the model are in excellent agreement with data from the Milky Way. The present model provides a detailed formation scenario for the Milky Way Galaxy and it yields new information about its kinematical and chemical history. The model predicts that even galaxies like the Milky Way show phases with supernova-driven galactic winds. However, with a mass loss of the order of only a few per cent of the total baryonic mass, these galaxies are in all probability not the main contributors to the enrichment of the intergalactic medium.

Type
Research Article
Copyright
Copyright © Astronomical Society of Australia 2004

References

Bekki, K., & Chiba, M. 2001, ApJ, 558, 666 Google Scholar
Bullock, J. S., Dekel, A., Kolatt, T. S., Kravtsov, A. V., Klypin, A. A., Porciani, C., & Primack, J. R. 2001, ApJ, 555, 240 Google Scholar
Buser, R. 2000, Science, 287, 69 Google Scholar
Chiba, M., & Beers, T. C. 2000, AJ, 119, 2843 Google Scholar
Eggen, O. J., Lynden-Bell, D., & Sandage, A. R. 1962, ApJ, 136, 748 Google Scholar
Immeli, A., Samland, M., Gerhard, O. E., & Westera, P. 2004, A&A, 413, 547 Google Scholar
Kauffmann, G., Colberg, J. M., Diaferio, A., & White, S. D. M. 1999, MNRAS, 303, 188 Google Scholar
McKee, C. F., & Ostriker, J. P. 1977, ApJ, 218, 148 Google Scholar
Raiteri, C. M., Villata, M., & Navarro, J. F. 1996, A&A, 315 Google Scholar
Samland, M. & Gerhard, O. E. 2003, A&A, 399, 961 Google Scholar
Samland, M., Hensler, G., & Theis, C. P. 1997, ApJ, 476, 544 Google Scholar
Searle, L., & Zinn, R. 1978, ApJ, 225, 357 Google Scholar
Shetrone, M., Venn, K. A., Tolstoy, E., Primas, F., Hill, V., & Kaufer, A. 2003, AJ, 125, 684 Google Scholar
Wechsler, R. H., Bullock, J. S., Primack, J. R., Kravtsov, A. V., & Dekel, A. 2002, ApJ, 568, 52 Google Scholar