No CrossRef data available.
Published online by Cambridge University Press: 25 April 2016
The visual spectra of some hot stars, including P Cygni, have emission with associated absorption troughs ˜ 102 km s-1 on the short-wavelength side (Beals 1929, 1951). These P Cygni profiles are easily understood in terms of mass flowing away from the star. Later, rocket observations of the far-ultraviolet resonance lines (Morton 1967) showed that the phenomenon is rather common among hot stars and the velocity shifts could be from 1000 to 3000 km s-1, demonstrating that the mass must be escaping from the star. Resonance lines provide the strongest absorption in the shell where neither the density nor the radiation field is high enough to leave many ions in excited states. Since the ion stages likely to be present around a hot star have their resonance lines shortward of the atmospheric cutoff, space observations are essential in this investigation. Figure 1 shows the P Cygni profile of O VI in ς Pup obtained with Copernicus satellite spectrometer.