Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-24T03:43:31.213Z Has data issue: false hasContentIssue false

The MAGPI survey: Drivers of kinematic asymmetries in the ionised gas of z ∼ 0.3 star-forming galaxies

Published online by Cambridge University Press:  28 November 2023

R.S. Bagge*
Affiliation:
School of Physics, University of New South Wales, Kensington, NSW, Australia ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), Canberra, Australia
C. Foster
Affiliation:
School of Physics, University of New South Wales, Kensington, NSW, Australia ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), Canberra, Australia
A. Battisti
Affiliation:
ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), Canberra, Australia Research School of Astronomy and Astrophysics, Australian National University, Weston Creek, ACT, Australia
S. Bellstedt
Affiliation:
ICRAR, The University of Western Australia, Crawley, WA, Australia
M. Mun
Affiliation:
ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), Canberra, Australia Research School of Astronomy and Astrophysics, Australian National University, Weston Creek, ACT, Australia
K. Harborne
Affiliation:
ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), Canberra, Australia ICRAR, The University of Western Australia, Crawley, WA, Australia
S. Barsanti
Affiliation:
ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), Canberra, Australia Research School of Astronomy and Astrophysics, Australian National University, Weston Creek, ACT, Australia Sydney Institue for Astronomy, School of Physics, University of Sydney, Camperdown, NSW, Australia
T. Mendel
Affiliation:
ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), Canberra, Australia Research School of Astronomy and Astrophysics, Australian National University, Weston Creek, ACT, Australia
S. Brough
Affiliation:
School of Physics, University of New South Wales, Kensington, NSW, Australia ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), Canberra, Australia
S.M. Croom
Affiliation:
ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), Canberra, Australia Sydney Institue for Astronomy, School of Physics, University of Sydney, Camperdown, NSW, Australia
C.D.P. Lagos
Affiliation:
ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), Canberra, Australia ICRAR, The University of Western Australia, Crawley, WA, Australia
T. Mukherjee
Affiliation:
Australian Astronomical Optics, Macquarie University, North Ryde, NSW, Australia
Y. Peng
Affiliation:
Department of Astronomy, School of Physics, Peking University, Beijing, China Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing, China
R.-S. Remus
Affiliation:
Universitäts-Sternwarte, Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
G. Santucci
Affiliation:
ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), Canberra, Australia ICRAR, The University of Western Australia, Crawley, WA, Australia
P. Sharda
Affiliation:
Leiden Observatory, Leiden University, RA, Leiden, The Netherlands
S. Thater
Affiliation:
Department of Astrophysics, University of Vienna, Vienna, Austria
J. van de Sande
Affiliation:
ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), Canberra, Australia Sydney Institue for Astronomy, School of Physics, University of Sydney, Camperdown, NSW, Australia
L.M. Valenzuela
Affiliation:
Universitäts-Sternwarte, Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
E. Wisnioski
Affiliation:
ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), Canberra, Australia Research School of Astronomy and Astrophysics, Australian National University, Weston Creek, ACT, Australia
T. Zafar
Affiliation:
Australian Astronomical Optics, Macquarie University, North Ryde, NSW, Australia Astronomy, Astrophysics and Astrophotonics Research Centre, Macquarie University, Sydney, NSW, Australia
B. Ziegler
Affiliation:
Department of Astrophysics, University of Vienna, Vienna, Austria
*
Corresponding author: R. S. Bagge, Email: [email protected]

Abstract

Galaxy gas kinematics are sensitive to the physical processes that contribute to a galaxy’s evolution. It is expected that external processes will cause more significant kinematic disturbances in the outer regions, while internal processes will cause more disturbances for the inner regions. Using a subsample of 47 galaxies ($0.27<z<0.36$) from the Middle Ages Galaxy Properties with Integral Field Spectroscopy (MAGPI) survey, we conduct a study into the source of kinematic disturbances by measuring the asymmetry present in the ionised gas line-of-sight velocity maps at the $0.5R_e$ (inner regions) and $1.5R_e$ (outer regions) elliptical annuli. By comparing the inner and outer kinematic asymmetries, we aim to better understand what physical processes are driving the asymmetries in galaxies. We find the local environment plays a role in kinematic disturbance, in agreement with other integral field spectroscopy studies of the local universe, with most asymmetric systems being in close proximity to a more massive neighbour. We do not find evidence suggesting that hosting an Active Galactic Nucleus contributes to asymmetry within the inner regions, with some caveats due to emission line modelling. In contrast to previous studies, we do not find evidence that processes leading to asymmetry also enhance star formation in MAGPI galaxies. Finally, we find a weak anti-correlation between stellar mass and asymmetry (i.e., high stellar mass galaxies are less asymmetric). We conclude by discussing possible sources driving the asymmetry in the ionised gas, such as disturbances being present in the colder gas phase (either molecular or atomic) prior to the gas being ionised, and non-axisymmetric features (e.g., a bar) being present in the galactic disk. Our results highlight the complex interplay between ionised gas kinematic disturbances and physical processes involved in galaxy evolution.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of the Astronomical Society of Australia

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baldwin, J. A., Phillips, M. M., & Terlevich, R. 1981, PASP, 93, 5Google Scholar
Barrera-Ballesteros, J. K., et al. 2014, A&A, 568, A70Google Scholar
Belfiore, F., et al. 2016, MNRAS, 461, 3111Google Scholar
Belfiore, F., et al. 2022, A&A, 659, A26Google Scholar
Bellhouse, C., et al. 2017, ApJ, 844, 49CrossRefGoogle Scholar
Bellstedt, S., et al. 2020, MNRAS, 498, 5581Google Scholar
Bernardi, M., et al. 2010, MNRAS, 404, 2087Google Scholar
Bigiel, F., et al. 2010, AJ, 140, 1194Google Scholar
Bigiel, F., et al. 2008, AJ, 136, 2846Google Scholar
Binney, J., & Tremaine, S. 2008, Galactic Dynamics (2nd edn.)Google Scholar
Bittner, A., et al. 2019, A&A, 628, A117Google Scholar
Bloom, J. V., et al. 2017a, MNRAS, 465, 123Google Scholar
Bloom, J. V., et al. 2017b, MNRAS, 472, 1809Google Scholar
Bloom, J. V., et al. 2018, MNRAS, 476, 2339Google Scholar
Bluck, A. F. L., et al. 2020, MNRAS, 492, 96CrossRefGoogle Scholar
Bower, R. G., et al. 2006, MNRAS, 370, 645Google Scholar
Bower, R. G., et al. 2017, MNRAS, 465, 32Google Scholar
Brough, S., et al. 2017, ApJ, 844, 59Google Scholar
Bruzual, G., & Charlot, S. 2003, MNRAS, 344, 1000Google Scholar
Bryant, J. J., et al. 2015, MNRAS, 447, 2857Google Scholar
Bryant, J. J., et al. 2019, MNRAS, 483, 458Google Scholar
Bundy, K., et al. 2015, ApJ, 798, 7Google Scholar
Calzetti, D. 2013, in Secular Evolution of Galaxies, ed. Falcón-Barroso, J. & Knapen, J. H., 419Google Scholar
Cameron, E. 2011, PASA, 28, 128CrossRefGoogle Scholar
Cappellari, M. 2017, MNRAS, 466, 798CrossRefGoogle Scholar
Cappellari, M., & Emsellem, E. 2004, PASP, 116, 138CrossRefGoogle Scholar
Cappellari, M., 2011, MNRAS, 413, 813Google Scholar
Cardelli, J. A., Clayton, G. C., & Mathis, J. S. 1989, ApJ, 345, 245CrossRefGoogle Scholar
Casanueva, C. I., Lagos, C. d. P., Padilla, N. D., & Davison, T. A. 2022, MNRAS, 514, 2031Google Scholar
Catinella, B., et al. 2023, MNRAS, 519, 1098Google Scholar
Chabrier, G. 2003, PASP, 115, 763Google Scholar
Cheung, E., et al. 2013, ApJ, 779, 162Google Scholar
Choi, W., Kim, C.-G., & Chung, A. 2022, ApJ, 936, 133Google Scholar
Cid Fernandes, R., et al. 2010, MNRAS, 403, 1036CrossRefGoogle Scholar
Cortese, L., Catinella, B., & Smith, R. 2021, PASA, 38, e035Google Scholar
Cortese, L., et al. 2014, ApJ, 795, L37Google Scholar
Daddi, E., et al. 2007, ApJ, 670, 156CrossRefGoogle Scholar
Davies, L. J. M., et al. 2015, MNRAS, 452, 616Google Scholar
Dekel, A., et al. 2009, Natur, 457, 451Google Scholar
Derkenne, C., et al. 2023, MNRAS, 522, 3602Google Scholar
Di Teodoro, E. M., & Fraternali, F. 2014, A&A, 567, A68Google Scholar
Di Teodoro, E. M., & Fraternali, F. 2015, MNRAS, 451, 3021Google Scholar
Driver, S. P., et al. 2011, MNRAS, 413, 971Google Scholar
Driver, S. P., et al. 2022, MNRAS, 513, 439Google Scholar
Ellison, S. L., et al. 2019, MNRAS, 487, 2491CrossRefGoogle Scholar
Falcón-Barroso, J., et al. 2006, MNRAS, 369, 529CrossRefGoogle Scholar
Feng, S., Shen, S.-Y., Yuan, F.-T., Riffel, R. A., & Pan, K. 2020, ApJ, 892, L20Google Scholar
Fischer, T. C., et al. 2017, ApJ, 834, 30Google Scholar
Florian, J., et al. 2020, A&A, 635, A41Google Scholar
Förster Schreiber, N. M., et al. 2006, ApJ, 645, 1062CrossRefGoogle Scholar
Fossati, M., et al. 2019, MNRAS, 490, 1451Google Scholar
Foster, C., et al. 2021, PASA, 38, e031Google Scholar
Franx, M., van Gorkom, J. H., & de Zeeuw, T. 1994, ApJ, 436, 642CrossRefGoogle Scholar
Fusco, T., et al. 2020, A&A, 635, A208Google Scholar
Gerhard, O. E. 1993, MNRAS, 265, 213Google Scholar
Greene, J. E., Zakamska, N. L., Ho, L. C., & Barth, A. J. 2011, ApJ, 732, 9Google Scholar
Henriksen, R. N. 2009, ApJ, 690, 102Google Scholar
Holmes, L., et al. 2015, MNRAS, 451, 4397Google Scholar
Hopkins, P. F., et al. 2006, ApJS, 163, 1Google Scholar
Hopkins, P. F., et al. 2014, MNRAS, 445, 581Google Scholar
Hopkins, P. F., et al. 2018, MNRAS, 480, 800Google Scholar
Ilha, G. S., et al. 2022, MNRAS, 516, 1442Google Scholar
Jiménez, E., Lagos, C., Ludlow, A. D., & Wisnioski, E. 2022, arXiv e-prints, arXiv:2210.09673 Google Scholar
Juneau, S., et al. 2022, ApJ, 925, 203Google Scholar
Kamphuis, P., et al. 2022, A&A, 668, A182CrossRefGoogle Scholar
Kannappan, S. J., Fabricant, D. G., & Franx, M. 2002, AJ, 123, 2358CrossRefGoogle Scholar
Kauffmann, G., et al. 2003, MNRAS, 346, 1055Google Scholar
Kennicutt, R. C., & Evans, N. J. 2012, ARA&A, 50, 531Google Scholar
Davà Kereš, D., Katz, N., Weinberg, D. H., & Davé, R. 2005, MNRAS, 363, 2Google Scholar
Kewley, L. J., Groves, B., Kauffmann, G., & Heckman, T. 2006, MNRAS, 372, 961Google Scholar
Knobel, C., et al. 2009, ApJ, 697, 1842Google Scholar
Kormendy, J., & Kennicutt, R. C., Jr. 2004, ARA&A, 42, 603Google Scholar
Krajnović, D., Cappellari, M., de Zeeuw, P. T., & Copin, Y. 2006, MNRAS, 366, 787Google Scholar
Krajnović, D., et al. 2011, MNRAS, 414, 2923Google Scholar
Kreckel, K., et al. 2016, ApJ, 827, 103CrossRefGoogle Scholar
Kronberger, T., Kapferer, W., Unterguggenberger, S., Schindler, S., & Ziegler, B. L. 2008, A&A, 483, 783Google Scholar
Kroupa, P. 2001, MNRAS, 322, 231Google Scholar
Kutdemir, E., et al. 2010, A&A, 520, A109CrossRefGoogle Scholar
Lagos, C. d. P., et al. 2015, MNRAS, 448, 1271Google Scholar
Lagos, C. d. P., et al. 2018, MNRAS, 476, 4327Google Scholar
Lee, B., et al. 2017, MNRAS, 466, 1382Google Scholar
Lelli, F., Fraternali, F., & Sancisi, R. 2010, A&A, 516, A11Google Scholar
Lena, D., et al. 2015, ApJ, 806, 84Google Scholar
Liddle, A. R. 2007, MNRAS, 377, L74CrossRefGoogle Scholar
Liu, G., Zakamska, N. L., Greene, J. E., Nesvadba, N. P. H., & Liu, X. 2013, MNRAS, 436, 2576Google Scholar
López-Cobá, C., et al. 2022, ApJ, 939, 40Google Scholar
Marinacci, F., et al. 2010, MNRAS, 404, 1464Google Scholar
McElroy, R., et al. 2022, MNRAS, 515, 3406Google Scholar
Oey, M. S., et al. 2007, ApJ, 661, 801Google Scholar
Osman, O., & Bekki, K. 2017, MNRAS, 471, L87CrossRefGoogle Scholar
Peng, C. Y., Ho, L. C., Impey, C. D., & Rix, H.-W. 2002, AJ, 124, 266Google Scholar
Peng, C. Y., Ho, L. C., Impey, C. D., & Rix, H.-W. 2010, AJ, 139, 2097Google Scholar
Pezzulli, G., Fraternali, F., & Binney, J. 2017, MNRAS, 467, 311Google Scholar
Planck Collaboration, et al. 2020, A&A, 641, A1Google Scholar
Reynolds, R. J. 1990, ApJ, 349, L17Google Scholar
Ristea, A., et al. 2022, MNRAS, 517, 2677Google Scholar
Robotham, A. S. G., et al. 2020, MNRAS, 495, 905Google Scholar
Robotham, A. S. G., et al. 2018, MNRAS, 476, 3137Google Scholar
Rogstad, D. H., Lockhart, I. A., & Wright, M. C. H. 1974, ApJ, 193, 309Google Scholar
Rutherford, T. H., et al. 2021, ApJ, 918, 84Google Scholar
Sánchez, S. F., et al. 2016, A&A, 594, A36Google Scholar
Sarzi, M., et al. 2006, MNRAS, 366, 1151Google Scholar
Schawinski, K., et al. 2007, MNRAS, 382, 1415Google Scholar
Schaye, J., et al. 2015, MNRAS, 446, 521Google Scholar
Shapiro, K. L., et al. 2008, ApJ, 682, 231Google Scholar
Shapiro, P. R., & Field, G. B. 1976, ApJ, 205, 762Google Scholar
Silk, J., & Rees, M. J. 1998, A&A, 331, L1Google Scholar
Speagle, J. S., Steinhardt, C. L., Capak, P. L., & Silverman, J. D. 2014, ApJS, 214, 15Google Scholar
Spekkens, K., & Sellwood, J. A. 2007, ApJ, 664, 204Google Scholar
Spitoni, E., Recchi, S., & Matteucci, F. 2008, A&A, 484, 743Google Scholar
Stevens, A. R. H., Croton, D. J., & Mutch, S. J. 2016, MNRAS, 461, 859Google Scholar
Tacconi, L. J., et al. 2013, ApJ, 768, 74CrossRefGoogle Scholar
Taylor, P., Federrath, C., & Kobayashi, C. 2018, MNRAS, 479, 141Google Scholar
Thorne, J. E., et al. 2021, MNRAS, 505, 540Google Scholar
Tully, R. B., & Fisher, J. R. 1977, A&A, 54, 661Google Scholar
van de Sande, J., et al. 2021, MNRAS, 505, 3078Google Scholar
van der Marel, R. P., & Franx, M. 1993, ApJ, 407, 525Google Scholar
van der Velden, E. 2020, JOSS, 5, 2004Google Scholar
Watts, A. B., et al. 2023a, MNRAS, 519, 1452Google Scholar
Watts, A. B., et al. 2023b, arXiv e-prints, arXiv:2303.07549 Google Scholar
Wright, R. J., Lagos, C. d. P., Power, C., & Correa, C. A. 2021, MNRAS, 504, 5702Google Scholar
Zakamska, N. L., & Greene, J. E. 2014, MNRAS, 442, 784Google Scholar
Zakamska, N. L., et al. 2016, MNRAS, 459, 3144Google Scholar