Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T15:18:16.943Z Has data issue: false hasContentIssue false

Magnetised Wave Collapse in Solar System Plasmas

Published online by Cambridge University Press:  25 April 2016

Andrew Melatos
Affiliation:
Department of Theoretical Physics and Research Centre for Theoretical Astrophysics, School of Physics, University of Sydney, NSW 2006
Peter Robinson
Affiliation:
Department of Theoretical Physics and Research Centre for Theoretical Astrophysics, School of Physics, University of Sydney, NSW 2006

Abstract

Clumpy, intense wave packets observed in situ in the Jovian and terrestrial electron foreshocks, and in the Earth’s auroral acceleration zone, point to the existence of non-linear plasma turbulence in these regions. In non-linear turbulence, wave packets collapse to short scales and high fields, stopping only when coherent wave-particle interactions efficiently dissipate the energy in the waves. The purpose of this paper is to examine the shortest scales and highest fields achieved during collapse in a strongly magnetised plasma, and identify parts of the solar system where the magnetised aspects of wave collapse are important.

Type
Solar and Solar System
Copyright
Copyright © Astronomical Society of Australia 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Benford, G., 1987, Phys. Fluids, 30, 2579.CrossRefGoogle Scholar
Borovsky, J.E., 1992, J. Geophys. Res., submitted.Google Scholar
Cairns, I.H. and Robinson, P.A., 1992, Geophys. Res. Lett., 19, 1069.CrossRefGoogle Scholar
DuBois, D.F., Rose, H.A. and Russell, D., 1990, J. Geophys. Res., 95, 21221.Google Scholar
Gurnett, D.A. and Frank, L.A., 1977, J. Geophys. Res., 82, 1031.Google Scholar
Gurnett, D.A., Maggs, J.E., Gallagher, D.L., Kurth, W.S. and Scarf, F.L., 1981, J. Geophys. Res., 86, 8833.CrossRefGoogle Scholar
Hoffmann, R.A. and Evans, D.S., 1968, J. Geophys. Res., 73, 6201.CrossRefGoogle Scholar
Janssen, G.C.A.M., Bonnie, J.H.M., Granneman, E.H.A., Krementsov, V.I. and Hopman, H.J., 1984, Phys. Fluids, 27, 726.Google Scholar
Kuznetsov, E.A. and Skoric, M.M., 1988, Phys. Rev. A, 38, 1422.Google Scholar
Lepping, R.P., Burlaga, L.F. and Klein, L.W., 1981, J. Geophys. Res., 86, 8141.Google Scholar
Melatos, A. and Robinson, P.A., 1992, Phys. Fluids B, submitted.Google Scholar
Morales, G.J. and Lee, Y.C., 1974, Phys. Rev. Lett., 33, 1534.Google Scholar
Newman, D.L., Winglee, P.M., Robinson, P.A., Glanz, J. and Goldman, M.V., 1990, Phys. Fluids B, 2, 2600.Google Scholar
Robinson, P.A., 1989, Phys. Fluids B, 1, 490.Google Scholar
Robinson, P.A., 1991, Phys. Fluids B, 3, 545.Google Scholar
Robinson, P.A. and Newman, D.L., 1990a, Phys. Fluids B, 2, 2999.Google Scholar
Robinson, P.A. and Newman, D.L., 1990b, Phys. Fluids B, 2, 3120.CrossRefGoogle Scholar
Robinson, P.A. and Newman, D.L., 1991, J. Geophys. Res., 96, 17733.CrossRefGoogle Scholar
Robinson, P.A., Willes, A.J. and Cairns, I.H., 1992, Astrophys. J., submitted.Google Scholar
Wong, A.Y. and Cheung, P.Y., 1983, Phys. Rev. Lett., 52, 1222.Google Scholar
Zakharov, V.E., 1972, Sov. Phys. JETP, 35, 908.Google Scholar