Published online by Cambridge University Press: 25 April 2016
The cataclysmic variables are close binary systems consisting of a late type star and a collapsed star, usually a white dwarf, undergoing mass exchange. According to the standard model, the late type star (the secondary) fills its Roche lobe and material escaping from the inner Lagrangian point is transferred to the primary by means of a mass transfer stream and an accretion disc. The spectroscopic and photometric properties of most cataclysmic variables can be understood in terms of radiation from the various components of such a system, with the accretion disc usually dominating in the optical region (see Warner (1976) for a review). However, recently a new class of cataclysmic variables has been discovered with distinctive optical properties that are inexplicable in terms of the standard model. These systems known as the AM Herculis type variables have provided the first direct evidence for the presence of strong magnetic fields in the white dwarfs of some cataclysmic variables. We present here a review of some of the important properties of these variables with emphasis on the unique system VV Puppis which has provided the first unequivocal evidence for high harmonic cyclotron radiation from white dwarfs.