Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-27T14:45:52.916Z Has data issue: false hasContentIssue false

The Magellanic System

Published online by Cambridge University Press:  25 April 2016

D. S. Mathewson*
Affiliation:
Mount Stromlo and Siding Spring Observatories, The Australian National University

Abstract

This review concentrates on observations of neutral hydrogen in the Magellanic System, and what they reveal about the structure, dynamics, evolution and ultimate fate of the LMC and SMC. Some recent observations of 161 Cepheid variables in the SMC are used together with the HI observations to determine the geometry of the SMC. These show that it has an amazing depth of at least 30 kpc. To explain the results it is proposed that the SMC had a close encounter with the LMC which has warped the disk of the LMC, produced the bridge between the two galaxies and tidally fissioned the SMC. The SMC is in the process of irreversible disintegration. It is believed that the Magellanic Clouds are not bound to our Galaxy and approached us from the direction of Andromeda. They may have had a close encounter with Andromeda 3 x 109 years ago, which may explain the massive starburst which occurred in the LMC and SMC at that time. It is believed that the Magellanic Stream has been swept out of the inter-Cloud region by the ram pressure of the gaseous halo of our Galaxy. If dynamic friction is sufficient for the Clouds to be captured and to eventually collide with our Galaxy, a polar ring will be formed similar to that observed in some other galaxies. The polar ring of dwarf spheroidals and outlying globular clusters at present encircling our Galaxy may be the remnants of a previous collision with some other galaxy 6 x 109 years ago.

Type
Contributions
Copyright
Copyright © Astronomical Society of Australia 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ardeberg, A., and Maurice, E., 1979, Astron. Astrophys., 77, 277.Google Scholar
Azzopardi, M., and Vigneau, J., 1975, Astron. Astrophys. Suppl., 22, 285.Google Scholar
Azzopardi, M., 1981, Proc. of ‘The Most Massive Stars’, ESO Workshop, eds., D’Odorico, S., Baade, D., and Kjär, K., p. 227.Google Scholar
Bajaja, E., and Loiseau, N., 1982, Astron. Astrophys. Suppl., 48, 71.Google Scholar
Cohen, J. G., 1984, Astron. J., 89, 1979.Google Scholar
Feast, M. W., Thackery, A. D., and Wesselink, A. S., 1960, Mon. Not. R. Astron. Soc., 121, 337.CrossRefGoogle Scholar
Feitzinger, J. V., 1980, Space Sci. Rev., 27, 35.Google Scholar
Florsch, A., Marcourt, J., and Fleck, E., 1981, Astron. Astrophys., 96, 158.Google Scholar
Frogel, J. A., 1984, Publ. Astron. Soc. Pac., 96, 856.Google Scholar
Hindman, J. V., 1967, Aust. J. Phys., 20, 147.Google Scholar
Kraft, R. P., and Schmidt, M., 1963, Astrophys. J., 137, 249.Google Scholar
Kunkel, W. E., 1976, Roy. Greenwich Obs. Bull. No. 182, 241.Google Scholar
Mathewson, D. S., Cleary, M. N., and Murray, J. D., 1974, Astrophys. J., 190, 291.Google Scholar
Mathewson, D. S., Cleary, M. N., and Murray, J. D., 1975, Astrophys. J., (Letters), 195, L97.Google Scholar
Mathewson, D. S., 1976a, Proc. Astron. Soc. Aust., 3, 20.Google Scholar
Mathewson, D. S., and Schwarz, M. P., 1976b, Mon. Not. R. Astron. Soc., 176, 47P.CrossRefGoogle Scholar
Mathewson, D. S., Schwarz, M. P., and Murray, J. D., 1977, Astrophys. J. (Letters), 217, L5.Google Scholar
Mathewson, D. S., Ford, V. L., Schwarz, M. P., and Murray, J. D., 1979, ‘The Large Scale Characteristics of the Galaxy’, IAU Symp. No. 84, ed. W. B., Burton, (Dordrecht:Reidel), p. 547.Google Scholar
Mathewson, D. S., and Ford, V. L., 1983, IAU Symp. No. 108, ‘The Structure and Evolution of the Magellanic Clouds’, Reidel, p. 125.Google Scholar
Mathewson, D. S., 1984, Mercury, 13, 57.Google Scholar
Mathewson, D. S., and Ford, V. L., 1985a, in preparation.Google Scholar
Mathewson, D. S., Ford, V. L., and Visvanathan, N., 1985b, submitted to Astrophys. J. Google Scholar
McGee, R. X., and Newton, L. M., 1981, Proc. Astron. Soc. Aust., 4, 189.Google Scholar
McGonegal, R., McLaren, R. A., McAlary, C. W., and Madore, B. F., 1982, Astrophys. J. (Letters), 257, L33.Google Scholar
Meurer, G., Bicknell, G. V., and Gingold, R. A., 1985, Proc. Astron. Soc. Aust., 6, …Google Scholar
Murai, T., and Fujimoto, M., 1980, Publ. Astron. Soc. Japan. 32, 581.Google Scholar
Payne-Gaposchkin, C., and Gaposchkin, S., 1966, Smithsonian Contrib. Astrophys., 9, 1.Google Scholar
Rohlfs, K., Kreitschmann, J., Siegman, B. C., and Feitzinger, J. V., 1984, Astron. Astrophys., 137, 343.Google Scholar
Sanduleak, N., 1968, Astron. J., 73, 246.Google Scholar
Schweizer, F., Whitmore, B. C., and Rubin, V. C., 1983, Astron. J., 88, 909.Google Scholar
Smith, M. G., and Weedman, D. W., 1973, Astrophys. J., 179, 461.Google Scholar
Thackeray, A. D., 1978, Mon. Not. R. Astron. Soc., 184, 699.Google Scholar
Tremaine, S. D., 1976, Astrophys. J., 203, 72.Google Scholar
Tully, R. B., and Wolff, S. C., 1984, Astrophys. J., 281, 67.CrossRefGoogle Scholar