Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T08:50:14.878Z Has data issue: false hasContentIssue false

Investigating Pulse Morphology in GX 1+4

Published online by Cambridge University Press:  05 March 2013

Michelle C. Storey
Affiliation:
Special Research Centre for Theoretical Astrophysics, School of Physics, University of Sydney, NSW 2006, Australia; [email protected]
J. G. Greenhill
Affiliation:
Department of Physics, University of Tasmania, GPO Box 252C, Hobart, Tas. 7001, Australia; [email protected]
T. Kotani
Affiliation:
Cosmic Radiation Laboratory, Institute of Physical and Chemical Research (RIKEN), 2-1, Hirosawa, Wako, Saitama 351-01, Japan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Observational and theoretical evidence points to the existence of an unusually high magnetic field on GX 1+4. The pulsar is thus an ideal laboratory for studying two-photon cyclotron emission, an important source of photons of frequency significantly less than the cyclotron frequency in X-ray pulsars. Low-frequency approximations to the two-photon cyclotron emission transition probabilities are derived. These are used to calculate the theoretical opening angle of the double-humped pulse shape predicted by the two-photon cyclotron emission model. The theoretical pulse shape, incorporating the effects of gravitational light bending, is compared with observations of GX 1+4. Observed light curves have opening angles consistent with the theoretically predicted maximum value.

Type
Research Article
Copyright
Copyright © Astronomical Society of Australia 1998

References

Bussard, R. W., Alexander, S. B., & Meszaros, P. 1986, Phys. Rev., D 34, 440 Google Scholar
Davidsen, A., Malina, R., & Bowyer, S. 1977, ApJ, 211, 866 Google Scholar
Dotani, T., Kii, T., Nagase, F., Makishimi, K., Ohashi, T., Sahao, T., Koyama, K., & Tuohy, R. 1989, PASJ, 41, 427 Google Scholar
Doty, J. P., Hoffman, J. A., & Lewin, W. H. G. 1981, ApJ, 243, 257 Google Scholar
Greenhill, J. G., Sharma, D. P., Dieters, S. W. B., Sood, R. K., Waldron, L., & Storey, M. C. 1993, MNRAS, 260, 21 Google Scholar
Kirk, J. G. 1985, A&A, 142, 430 Google Scholar
Kirk, J. G., & Melrose, D. B. 1986, A&A, 156, 277 Google Scholar
Kirk, J. G., Melrose, D. B., & Peters, J. G. 1984, PASA, 5, 478 Google Scholar
Kirk, J. G., Nagel, W., & Storey, M. C. 1986, A&A, 169, 259 Google Scholar
Kotani, T. 1996, preprintGoogle Scholar
Leahy, D. A., & Li, L. 1995, MNRAS, 277, 1177 Google Scholar
Melrose, D. B., & Kirk, J. G. 1986, A&A, 156, 268 (MK86)Google Scholar
Mony, B., et al. 1991, A&A, 247, 405 Google Scholar
Nollert, H.-P., Kraus, U., Rebetzky, A., Herold, H., Maile, T., & Ruder, H. 1989, Proc. 23rd ESLAB Symp. on Two Topics in X-ray Astronomy, Bologna, September 1989Google Scholar
Padden, W. E. P., & Storey, M. C. 1986, PASA, 6, 446 CrossRefGoogle Scholar
Pavlov, G. G., Shibanov, Yu. A., & Meszaros, P. 1989, Phys. Rep., 182, 187 Google Scholar
White, N. E., Swank, J. H., & Holt, S. S. 1983, ApJ, 270, 711 Google Scholar