Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-14T11:25:03.155Z Has data issue: false hasContentIssue false

Interpretation of Abundance Ratios

Published online by Cambridge University Press:  05 March 2013

Francesca Matteucci*
Affiliation:
Dipartimento di Astronomia, Universita' di Trieste, 34127 Trieste, Italy
Cristina Chiappini
Affiliation:
Osservatorio Astronomico di Trieste (INAF), 34127 Trieste, Italy
*
CCorresponding author. Email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we discuss abundance ratios and their relation to stellar nucleosynthesis and other parameters of chemical evolution models, reviewing and clarifying the correct use of the observed abundance ratios in several astrophysical contexts. In particular, we start from the well-known fact that abundance ratios depend on stellar yields, initial mass function, and stellar lifetimes, and we show, by means of specific examples, that in some cases it is not correct to infer constraints on the contributions from different supernovae types (Ia, II), and particularly on different sets of yields, in the absence of a complete chemical evolution model taking into account stellar lifetimes. In spite of the fact that some of these results should be well known, we believe that it is useful to discuss the meaning of abundance ratios in the light of several recent claims based upon an incorrect interpretation of observed abundance ratios. In particular, the procedure, often used in the recent literature, of directly deriving conclusions about stellar nucleosynthesis just by relating abundance ratios to yield ratios implicitly assumes the instantaneous recycling approximation. This approximation is clearly not correct when one analyses the contributions of supernovae type Ia relative to supernovae type II as functions of cosmic time. In this paper we show that the uncertainty which arises from adopting this oversimplified procedure in a variety of astrophysical objects, such as elliptical galaxies, the intracluster medium, and high redshift objects, does not allow us to draw any firm conclusion, and that the differences between abundance ratios predicted by models with the instantaneous recycling approximation and models with detailed stellar lifetimes is of the same order as the differences between different sets of yields. On the other hand, if one is interested only in establishing the global metal production (e.g. galaxies plus intracluster medium) over the lifetime of the Universe, then the adoption of simplified arguments can be justified.

Type
Research Article
Copyright
Copyright © Astronomical Society of Australia 2005

References

Anders, E., & Grevesse, N. 1989, GeCoA, 53, 197 CrossRefGoogle Scholar
Arnaud, M., Hughes, J. P., Forman, W., Jones, C., Lachieze-Rey, M., Yamashita, K., & Hatsukade, I. 1992, ApJ, 390, 345 Google Scholar
Barbuy, B., & Grenon, M. 1990, in ESO/CTIO Workshop, Bulges of Galaxies, eds. B. J. Jarvis, & D. M. Terndrup (Garching: ESO Publications), 83 Google Scholar
Barbuy, B., Ortolani, S., & Bica, E. 1998, A&AS, 132, 333 Google Scholar
Calura, F., & Matteucci, F. 2004, MNRAS, 350, 351 Google Scholar
Calura, F., Matteucci, F., & Vladilo, G. 2003, MNRAS, 340, 59 Google Scholar
Centurión, M., Molaro, P., Vladilo, G., Péroux, C., Levshakov, S. A., & D'Odorico, V. 2003, A&A, 403, 55 Google Scholar
Chiappini, C., Romano, D., & Matteucci, F. 2003, MNRAS, 339, 63 Google Scholar
Chiosi, C. 2000, A&A, 364, 423 Google Scholar
Finoguenov, A., Matsushita, K., Böhringer, H., Ikebe, Y., & Arnaud, M. 2002, A&A, 381, 21 Google Scholar
Gastaldello, F., & Molendi, S. 2002, ApJ, 572, 160 CrossRefGoogle Scholar
Gibson, B. K., Loewenstein, M., & Mushotzky, R. F. 1997, MNRAS, 290, 623 Google Scholar
Greggio, L., & Renzini, A. 1983, MmSAI, 54, 311 Google Scholar
Hill, V., François, P., Spite, M., Primas, F., & Spite, F. 2000, A&A, 364, 1 Google Scholar
Iwamoto, K., Brachwitz, F., Nomoto, K., Kishimoto, N., Umeda, H., Hix, W. R., & Thielemann, F. -K. 1999, ApJS, 125, 439 Google Scholar
Larson, R. B. 1972, NPhS, 236, 7 Google Scholar
Loewenstein, M. 2004, in Carnegie Observatories Astrophysics Series, Vol. 4: Origin and Evolution of the Elements, eds. A. McWilliam, & M. Rauch (Cambridge: Cambridge University Press), 425 Google Scholar
Matteucci, F. 1991, in SN 1987A and Other Supernovae, eds. I. J. Danziger, & K. Kjär (Garching: ESO), 703 Google Scholar
Matteucci, F. 1994, A&A, 288, 57 Google Scholar
Matteucci, F. 2001, The Chemical Evolution of the Galaxy (Dordrecht: Kluwer)Google Scholar
Matteucci, F., & Chiosi, C. 1983, A&A, 123, 121 Google Scholar
Matteucci, F., & Gibson, B. K. 1995, A&A, 304, 11 Google Scholar
Matteucci, F., & Greggio, L. 1986, A&A, 154, 279 Google Scholar
Matteucci, F., & Recchi, S. 2001, ApJ, 558, 351 Google Scholar
Matteucci, F., & Vettolani, G. 1988, A&A, 202, 21 Google Scholar
McWilliam, A., & Rich, R. M. 1994, ApJS, 91, 749 Google Scholar
Meléndez, J., & Barbuy, B. 2002, ApJ, 575, 474 CrossRefGoogle Scholar
Moretti, A., Portinari, L., & Chiosi, C. 2003, A&A, 408, 431 Google Scholar
Nomoto, K., Iwamoto, K., Nakasato, N., Thielemann, F. -K., Brachwitz, F., Tsujimoto, T., Kubo, Y., & Kishimoto, N. 1997, NuPhA, 621, 467 Google Scholar
Prantzos, N., & Aubert, O. 1995, A&A, 302, 69 Google Scholar
Pettini, M., Ellison, S. L., Bergeron, J., & Petitjean, P. 2002, A&A, 391, 21 Google Scholar
Pipino, A., & Matteucci, F. 2004, MNRAS, 347, 968 CrossRefGoogle Scholar
Pipino, A., Matteucci, F., Borgani, S., & Biviano, A. 2002, NewA, 7, 227 CrossRefGoogle Scholar
Portinari, L., Moretti, A., Chiosi, C., & Sommer-Larsen, J. 2004, ApJ, 604, 579 Google Scholar
Prochaska, J. X., Henry, R. B. C., O'Meara, J. M., Tytler, D., Wolfe, A. M., Kirkman, D., Lubin, D., & Suzuki, N. 2002, PASP, 114, 993 Google Scholar
Renzini, A. 1997, ApJ, 488, 35 Google Scholar
Romano, D., Silva, L., Matteucci, F., & Danese, L. 2003, MNRAS, 346, 295 Google Scholar
Salpeter, E. E. 1955, ApJ, 121, 161 CrossRefGoogle Scholar
Scalo, J. M. 1986, FCPh, 11, 1 Google Scholar
Tinsley, B. M. 1979, ApJ, 229, 1046 Google Scholar
Tinsley, B. M. 1980, FCPh, 5, 287 Google Scholar
Vladilo, G. 2002, A&A, 391, 407 Google Scholar