Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-25T18:12:47.282Z Has data issue: false hasContentIssue false

Influence of the Neutron Star 1E 161348–5055 in RCW 103 on the Surrounding Medium

Published online by Cambridge University Press:  05 March 2013

E. M. Reynoso*
Affiliation:
School of Physics, University of Sydney, Sydney NSW 2006, Australia. Instituto de Astronomía y Física del Espacio, CC 67, Suc 28, 1428 Buenos Aires, Argentina.
A. J. Green
Affiliation:
School of Physics, University of Sydney, Sydney NSW 2006, Australia.
S. Johnston
Affiliation:
School of Physics, University of Sydney, Sydney NSW 2006, Australia.
W. M. Goss
Affiliation:
National Radio Astronomy Observatory, P. O. Box 0, Socorro, NM 87801, USA.
G. M. Dubner
Affiliation:
Instituto de Astronomía y Física del Espacio, CC 67, Suc 28, 1428 Buenos Aires, Argentina.
E. B. Giacani
Affiliation:
Instituto de Astronomía y Física del Espacio, CC 67, Suc 28, 1428 Buenos Aires, Argentina.
*
4Author to whom correspondence should be addressed (e-mail: [email protected])
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We have carried out a study of the neutral hydrogen in the direction of the X-ray source 1E 161348–5055, a compact central object (CCO) located in the interior of the supernova remnant (SNR) RCW 103. The Hi 21 cm line observations were carried out using the Australia Telescope Compact Array, complemented with single dish data from the Parkes radio telescope to recover information at all spatial scales. We derive a distance to RCW 103 of 3.1 kpc, in agreement with previous distance measurements. We have also detected a small hole in the Hi emission which is positionally and kinematically coincident with the location of the CCO which confirms the association between the SNR and the CCO. This is the third case of a depression in Hi emission seemingly associated with CCOs in SNRs. The characteristic parameters of the holes such as their size, eccentricity and evacuated mass are similar in all three cases. We estimate the absorbing HI column density towards 1E 161348–5055 to be ∼6 × 1021 cm–2, a value compatible with a blackbody solution for the CCO X-ray emission. However, the implied temperature and luminosity are very high compared to most neutron stars. Moreover, the strong long-term variability in X-rays favours the hypothesis that 1E 161348–5055 is an accreting binary source rather than an isolated, cooling neutron star. An analysis of the continuum image obtained at 1.4 GHz from these observations shows no trace of a pulsar wind nebula around 1E 161348–5055, in spite of it being a young object.

Type
Research Article
Copyright
Copyright © Astronomical Society of Australia 2004

References

Becker, W., & Aschenbach, B. 2002, in Proc. of the 270.WE-Heraeus Seminar on Neutron Stars, Pulsars and Supernova Remnants, eds. W. Becker, H. Lesch, & J. Trümper, (Garching bei München: MPE), 64 Google Scholar
Becker, W., Trümper, J., Hasinger, J., & Aschenbach, B. 1993, in Isolated Pulsars, eds. K. A. van Riper, R. I. Epstein, & C. Ho (Cambridge: Cambridge University Press), 116Google Scholar
Brazier, K. T. S., & Johnston, S. 1999, MNRAS, 305, 671 Google Scholar
Burton, M. G., & Spyromilio, J. 1993, PASA, 10, 327 CrossRefGoogle Scholar
Carter, L. M., Dickel, J. R., & Bomans, D. J. 1997, PASA, 109, 990 CrossRefGoogle Scholar
Caswell, J. L., Murray, J. D., Roger, R. S., Cole, D. J., & Cook, D. J. 1975, A&A, 45, 239 Google Scholar
Caswell, J. L., Haynes, R. F., Milne, D. K., & Wellington, K. 1980, MNRAS, 190, 881 Google Scholar
Dickel, J. R., Green, A., Ye, T., & Milne, D. K. 1996, AJ, 111, 340 Google Scholar
Dickey, J. M., McClure-Griffiths, N. M., Gaensler, B. M., & Green, A. J. 2003, ApJ, 585, 801 Google Scholar
Fich, M., Blitz, L., & Stark, A. A. 1989, ApJ, 342, 272 CrossRefGoogle Scholar
Frail, D. A. 1998, in The Many Faces of Neutron Stars, eds. R. Buccheri, J. van Paradijs, & M. A. Alpar (NATO ASI Ser. C, 515; Dordrecht: Kluwer), 179 Google Scholar
Gaensler, B. M., Stappers, B. W., Frail, D. A., Moffett, D. A., Johnston, S., & Chatterjee, S. 2000, MNRAS, 318, 58 Google Scholar
Garmire, G. P., Pavlov, G. G., Garmire, A. B., & Zavlin, V. E. 2000a, IAU Circ. 7350 Google Scholar
Garmire, G. P., Garmire, A. B., Pavlov, G. G., & Burrows, D. N. 2000b, AAS HEAD Meeting 32, #32.11Google Scholar
Georgelin, Y. M., & Georgelin, Y. P. 1976, A&A, 49, 57 Google Scholar
Geppert, U., Page, D., & Zannias, T. 1999, A&A, 345, 847 Google Scholar
Giacani, E. B., Dubner, G. M., Green, A. J., Goss, W. M., & Gaensler, B. M. 2000, AJ, 119, 281 Google Scholar
Gotthelf, E. V., Petre, R., & Hwang, U. 1997, ApJ, 487, L175 Google Scholar
Gotthelf, E. V., Petre, R., & Vasisht, G. 1999, ApJ, 514, L107 Google Scholar
Heyl, J. S., & Hernquist, L. 1998, MNRAS, 298, 17 Google Scholar
Leibowitz, E. M., & Danziger, I. J. 1993, MNRAS, 204, 273 Google Scholar
Lloyd, D. A., Hernquist, L., & Heyl, J. S. 2002, in ASP Conf. Ser. 271, Constraining the Birth Events of Neutron Stars, eds. P. O. Slane & B. M. Gaensler (San Francisco: ASP), 323 Google Scholar
McClure-Griffiths, N. M., Green, A. J., Dickey, J. M., Gaensler, B. M., Haynes, R. F., & Wieringa, M. H. 2001, ApJ, 551, 394 Google Scholar
Oliva, E., Moorwood, A. F. M., & Danziger, I. J. 1990, A&A, 240, 453 Google Scholar
Oliva, E., Moorwood, A. F. M., Drapatz, S., Lutz, D., & Strum, E. 1999, A&A, 343, 9430 Google Scholar
Pavlov, G. G., Zavlin, V. E., & Trümper, J. 1999, ApJ, 511, L45 Google Scholar
Pavlov, G. G., Sanwal, D., Garmire, G. P., & Zavlin, V. E. 2002, in ASP Conf. Ser. 271, Neutron Stars in Supernova Remnants, eds. O. Slane & B. M. Gaensler, 247 (astro-ph/0112322)Google Scholar
Reynolds, S. P., & Chevalier, R. S. 1984, ApJ, 278, 630 Google Scholar
Reynoso, E. M., Green, A. J., Johnston, S., Dubner, G. M., Giacani, E. B., & Goss, W. M. 2003, MNRAS, 345, 671 Google Scholar
Ruiz, M. T. 1983, AJ, 88, 1210 CrossRefGoogle Scholar
Sanwal, D., Garmire, G. P., Garmire, A., Pavlov, G. G., & Mignani, R. 2002, BAAS, 200, 7201 Google Scholar
Sault, R. J., Teuben, P. J., & Wright, M. C. H. 1995, in ASP Conf. Ser. 77, Astronomical Data Analysis Software and Systems IV, eds. R. A. Shaw, H. E. Payne, & J. J. E. Hayes (San Francisco: ASP), 433 Google Scholar
Schwarz, U. J., Goss, W. M., Kalberla, P. M., & Benaglia, P. 1995, A&A, 299, 193 Google Scholar
Slane, P., Seward, F. D., Bandiera, R., Torii, K., & Tsunemi, H. 1997, ApJ, 485, 221 Google Scholar
Tuohy, I. R., Córdova, F. A., Garmire, G. P., Mason, K. O., Charles, P. A., Walter, F. M., & Clark, D. H. 1979, ApJ, 230, 37 Google Scholar
Tuohy, I. R., & Garmire, G. P. 1980, ApJ, 239, L107 Google Scholar
Tuohy, I. R., Garmire, G. P., Manchester, R. N., & Dopita, M. A. 1983, ApJ, 268, 778 Google Scholar
van, den Bergh S., Marscher, A., & Terzian, Y. 1973, ApJS, 26, 19 Google Scholar
Vasisht, G., Kulkarni, S. R., Anderson, S. B., Hamilton, T. T., & Kawai, N. 1997, ApJ, 476, L43 Google Scholar
Zavlin, V. E., Pavlov, G. G., & Shibanov, Yu. A. 1996, A&A, 315, 141 Google Scholar
Zavlin, V. E., Pavlov, G. G., & Trümper, J. 1998, A&A, 331, 821 Google Scholar
Zavlin, V. E., Trümper, J., & Pavlov, G. G. 1999, ApJ, 525, 959 Google Scholar