Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T16:13:11.017Z Has data issue: false hasContentIssue false

Further Discussion of Binary Star Radio Survey Data

Published online by Cambridge University Press:  05 March 2013

E. Budding
Affiliation:
Central Institute of Technology, PO Box 40740, Upper Hutt, Wellington, New Zealand Carter Observatory, PO Box 2909, Wellington, New Zealand; [email protected]
O. B. Slee
Affiliation:
Australia Telescope National Facility, PO Box 76, Epping, NSW 2121, Australia; [email protected]
K. Jones
Affiliation:
Physics Department, University of Queensland, St Lucia, Qld 4072, Australia; [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Statistical information on 8280 individual radio observations of binary stars, predominantly at 8·4 GHz using the Parkes 64 m antenna, is presented. Three main groups are distinguished: (i) RS CVn stars, (ii) classical Algol binaries (EA2s), and (iii) detached pairs of generally early type (ETBs).

The RS CVn stars more frequently gave rise to detectable fluxes, while the ETBs, in these data, are a small and rather heterogeneous class. The Algols' emission appears to increase near conjunction phases, though we cannot clearly distinguish any special property of the Algols' phase-dependent behaviour that is not also shared by the RS CVn binaries. Both these categories' data show a bimodal, phase-dependent pattern to the distribution of detections, suggesting that these binary types share similar underlying physical properties, though there could also be other factors at play. The sample sizes of the Algols and particularly the ETB detections are too small for effective, discriminatory statistics, however.

Type
Research Article
Copyright
Copyright © Astronomical Society of Australia 1998

References

Beasley, A. J., Stewart, R. T., & Carter, B. D. 1992, MNRAS, 254, 1 CrossRefGoogle Scholar
Budding, E. 1985, Proc. 3rd IAU Asian Pacific Regional Meeting, ed. M. Kitamura & E. Budding (Dordrecht: Kluwer), p. 241 Google Scholar
Budding, E. 1996, in Stellar Surface Structure, IAU Symp. 176, ed. K. G. Strassmeier & J. L. Linsky (Dordrecht: Kluwer), p. 95 Google Scholar
Chanmugam, D., & Dulk, G. A. 1982, ApJ, 255, L107 CrossRefGoogle Scholar
Conover, W. J. 1980, Practical Nonparametric Statistics (New York: Wiley)Google Scholar
Dulk, G. A. 1985, ARA&A, 23, 169 Google Scholar
Ferrario, L., Wickramasinghe, D. T., & Tuohy, I. R. 1989, ApJ, 341, 327 CrossRefGoogle Scholar
Kholopov, P. N. 1985, General Catalogue of Variable Stars (Moscow: Nauka)Google Scholar
Linsky, J. L. 1988, in Multiwavelength Astrophysics, ed. F. A. Cordova (Cambridge Univ. Press), p. 49 Google Scholar
Linsky, J. L. 1994, in Solar Coronal Structures, IAU Colloq. 144, ed. V. Rusin et al. (Bratislava: Veda), p. 1 Google Scholar
Lubow, S. H., & Shu, F. H. 1975, ApJ, 198, 383 CrossRefGoogle Scholar
Plavec, M. J. 1989, Space Sci. Rev., 50, 95 CrossRefGoogle Scholar
Slee, O. B., Nelson, G. J., Stewart, R. T., Wright, A. E., Innis, J. L., Ryan, S. G., & Vaughan, A. E. 1987, MNRAS, 229, 659 CrossRefGoogle Scholar
Stewart, R. T., Innis, J. L., Slee, O. B., Nelson, G. J., & Wright, A. E. 1988, AJ, 96, 371 CrossRefGoogle Scholar
Strassmeier, K. G., Hall, D. S., Fekel, F. C., & Scheck, M. 1993, A&AS, 100, 173 Google Scholar
Wright, A. E., Cropper, M., Stewart, R. T., Nelson, G. J., & Slee, O. B. 1988, MNRAS, 231, 319 CrossRefGoogle Scholar