Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-27T14:54:23.741Z Has data issue: false hasContentIssue false

Frequency Dependent Ray Paths in Local Helioseismology

Published online by Cambridge University Press:  05 March 2013

G. Barnes
Affiliation:
High Altitude Observatory, National Center for Atmospheric Research, Boulder CO 80307-3000, U.S.A. (current address); [email protected] Department of Mathematics & Statistics, P.O. Box 28M, Monash University, Vic 3800, Australia; [email protected]
P. S. Cally
Affiliation:
Department of Mathematics & Statistics, P.O. Box 28M, Monash University, Vic 3800, Australia; [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The surface of the Sun is continually oscillating due to sound waves encroaching on it from the interior. Measurements of the surface velocity are used to infer some of the properties of the regions through which the sound waves have propagated. Traditionally, this has been done by using a modal decomposition of the surface disturbances. However, the use of ray descriptions, in the form of acoustic holography or time–distance helioseismology, provides an alternative approach which may reveal more detailed information about the properties of local phenomena such as sunspots and active regions. Fundamental to any such treatment is determining the correct ray paths in a given atmosphere. In the simplest approach, the ray paths are constructed to minimise the travel time between two points (Fermat's principle). However, such an approach is only valid in the high frequency limit, ω » ωc, N, where ωc is the acoustic cut-off and N the Brunt-VÄisÄlÄ frequency. Although ωc is often included in time– distance calculations, and N occasionally, the same is not true of acoustic holography. We argue that this raises concerns about image sharpness. As illustrations, representative ray paths are integrated in a realistic solar model to show that the Fermat approximation performs poorly for frequencies of helioseismic interest. We also briefly discuss the importance of the Brunt-VÄisÄlÄ frequency to the time–distance diagram.

Type
Research Article
Copyright
Copyright © Astronomical Society of Australia 2001

References

Barnes, G., & Cally, P. S. 2000, Sol. Phys., 193, 373 CrossRefGoogle Scholar
Bender, C. M., & Orszag, S. A. 1978, Advanced Mathematical Methods for Scientists and Engineers (New York: McGraw-Hill)Google Scholar
Bogdan, T. J. 1997, ApJ, 477, 475 Google Scholar
Bogdan, T. J., Braun, D. C., & Lites, B. W. 1998, ApJ, 492, 379 Google Scholar
Bogdan, T. J., & Cally, P. S. 1997, Proc. R. Soc. London A, 453, 943 Google Scholar
Braun, D. C. 1995, ApJ, 451, 859 Google Scholar
Braun, D. C., & Lindsey, C. 2000a, Sol. Phys., 192, 285 Google Scholar
Braun, D. C., & Lindsey, C. 2000b, Sol. Phys., 192, 307 Google Scholar
Brekhovskikh, L., & Lysanov, Yu. 1982, Fundamentals of Ocean Acoustics (Berlin: Springer-Verlag)Google Scholar
Cally, P. S. 2000, Sol. Phys., 192, 395 Google Scholar
Cally, P. S., & Bogdan, T. J. 1993, ApJ, 402, 721 Google Scholar
Cally, P. S., & Bogdan, T. J. 1997, ApJ, 486, L 67 Google Scholar
Cally, P. S., Bogdan, T. J., & Zweibel, E. G. 1994, ApJ, 437, 505 Google Scholar
Charbonneau, P., Tomczyk, S., Schou, J., & Thompson, M. J. 1998, ApJ, 496, 1015 Google Scholar
Chou, D.-Y., & Duvall, T. L. Jr. 2000, ApJ, 533,568 Google Scholar
Christensen-Dalsgaard, J., & Berthomieu, G. 1991, in Solar Inte-rior and Atmosphere, ed. Cox, A. N., Livingston, W. C., & Matthews, M. S., The University of Arizona Press, 401 Google Scholar
Christensen-Dalsgaard, J., Gough, D. O., & Thompson, M. J. 1991, ApJ, 378, 413 Google Scholar
Christensen-Dalsgaard, J., Duvall, T. L., Gough, D. O., Harvey, J. W., & Rhodes, E. J. 1985, Nature, 315, 378 CrossRefGoogle Scholar
Deubner, F.-L. 1975, A&A, 44, 371 Google Scholar
Deubner, F.-L., & Gough, D. 1984, ARA&A, 22, 593 Google Scholar
D'Silva, S. 1994, ApJ, 435, 881 Google Scholar
D'Silva, S. 1996a, ApJ, 469, 964 Google Scholar
D'Silva, S. 1996b, ApJ, 462, 519 Google Scholar
D'Silva, S., & Duvall, T. L. Jr. 1995, ApJ, 438, 454 Google Scholar
Duvall, T. L. Jr., Jeffries, S. M., Harvey, J. W., & Pomerantz, M. A. 1993, Nature, 362, 430 Google Scholar
Duvall, T. L. Jr., D'Silva, S., Jeffries, S. M., Harvey, J. W., & Schou, J. 1996, Nature, 379, 235 Google Scholar
Hill, F., Deubner, F.-L., & Isaak, G. 1991, in Solar Interior and Atmosphere, ed. Cox, A. N., Livingston, W. C., & Matthews, M. S., The University of Arizona Press, 329 Google Scholar
Jefferies, S. M., Osaki, Y., Shibahashi, H., Duvall, T. L. Jr., Harvey, J. W., & Pomerantz, M. A. 1994, ApJ, 434, 795 Google Scholar
Kosovichev, A. G., & Duvall, T. L. Jr. 1997, in SCORe'96: Solar Convection and Oscillations and their Relationship, ed. Pijpers, F. P., Christensen-Dalsgaard, J., & Rosenthal, C. S., Kluwer, 241 Google Scholar
Kosovichev, A. G., Duvall, T. L. Jr., & Scherrer, P. H. 2000, Sol. Phys., 192, 159 Google Scholar
Lamb, H. C. 1932, Hydrodynamics, 6th ed., Cambridge University PressGoogle Scholar
Lindsey, C., & Braun, D. C. 1997, ApJ, 485, 895 CrossRefGoogle Scholar
Lindsey, C., & Braun, D. C. 1998, ApJ, 509, L 129 Google Scholar
Lindsey, C., & Braun, D. C. 1999, ApJ, 510, 494 CrossRefGoogle Scholar
Lindsey, C., & Braun, D. C. 2000, Sol. Phys., 192, 261 Google Scholar
Munk, W., Worcester, P., & Wunsch, C. 1995, OceanAcoustic Tomography, Cambridge University Press, 40 Google Scholar
Price, G. H. 2000, Sol. Phys., 192, 211 Google Scholar
Unno, W., Osaki, Y., Ando, H., Saio, H., & Shibahashi, H. 1989, Nonradial Oscillations of Stars (University of Tokyo Press)Google Scholar
Weinberg, S. 1962, Phys. Rev., 126, 1899 Google Scholar