Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-25T17:23:35.306Z Has data issue: false hasContentIssue false

Evolution and Nucleosynthesis in Extremely Metal-Poor, Asymptotic Giant Branch Stars

Published online by Cambridge University Press:  05 March 2013

Nobuyuki Iwamoto*
Affiliation:
Nuclear Data Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We evolve extremely metal-poor ([Fe/H]≃–3), thermally pulsing Asymptotic Giant Branch (AGB) models with the mass range of 1–8 M. The chemical yields ejected from the models are obtained by considering mass loss. We find that the 1- and 2-M AGB models are not affected by hot bottom burning (HBB). Nevertheless, they produce large amount of 7Li in an H-flash event. The occurrence of this event is associated with the ingestion of protons from the overlying H-rich envelope into the He convective shell driven by thermal pulse. The resulting 7Li abundances in the ejecta are higher than the primordial one predicted in Big-Bang nucleosynthesis. The efficient production of 7Li by the operation of HBB is also confirmed in the models of 4–8 M. If these AGB stars have a low-mass companion, it is probable that mass loss from the primary AGB star brings the materials enriched in 7Li into the secondary star. This makes the surface composition of the secondary Li-rich. The formation of Li-rich stars, however, is strongly dependent on the mass loss history and binary separation. The nucleosynthesis for the other light nuclei is also calculated up to the end of the AGB phase. We find that the abundance patterns of the metal-poor stars CS 29528–041 and CS 29497–030 are well reproduced by yields from our AGB models.

Type
Theory, Evolution and Models
Copyright
Copyright © Astronomical Society of Australia 2009

References

Abia, C. & Isern, J. 1997, MNRAS, 289, L11 CrossRefGoogle Scholar
Alexander, D. R. & Ferguson, J. W. 1994, ApJ, 437, 879 CrossRefGoogle Scholar
Anders, E. & Grevesse, N. 1989, GeCoA, 53, 197 CrossRefGoogle Scholar
Angulo, C. et al., 1999, NuPhA, 656, 3 Google Scholar
Aoki, W., Barklem, P., Beers, T. C., Christlieb, N. & Inoue, S. 2008, AIPC, 1016, 37 Google Scholar
Bao, Z. Y., Beer, H., Käppeler, F., Voss, F., Wisshak, K. & Rauscher, T., 2000, ADNDT, 76, 70 CrossRefGoogle Scholar
Blöcker, T. 1995, A&A, 297, 727 Google Scholar
Cameron, A. G. W. & Fowler, W. A. 1971, ApJ, 164, 111 CrossRefGoogle Scholar
Campbell, S. W. & Lattanzio, J. C. 2008, A&A, 490, 769 Google Scholar
Caughlan, G. R. & Fowler, W. A. 1988, ADNDT, 40, 283 CrossRefGoogle Scholar
Christlieb, N. et al., 2002, Natur, 419, 904 CrossRefGoogle Scholar
Cristallo, S., Straniero, O., Lederer, M. T. & Aringer, B. 2007, ApJ, 667, 489 CrossRefGoogle Scholar
Forestini, M. & Charbonnel, C. 1997, A&AS, 123, 241 Google Scholar
Frebel, A. et al., 2005, Natur, 434, 871 CrossRefGoogle Scholar
Frebel, A., Collet, R., Eriksson, K., Christlieb, N. & Aoki, W. 2008, ApJ, 684, 588 CrossRefGoogle Scholar
Fujimoto, M. Y., Ikeda, Y. & Iben, I. J. 2000, ApJ, 529, L25 CrossRefGoogle Scholar
Garcia-Berro, E., Ritossa, C. & Iben, I. J. 1997, ApJ, 485, 765 CrossRefGoogle Scholar
Herwig, F. 2004, ApJS, 155, 651 CrossRefGoogle Scholar
Herwig, F. 2005, ARA&A, 43, 435 Google Scholar
Iben, I. J., Ritossa, C. & Garcia-Berro, E. 1997, ApJ, 489, 772 CrossRefGoogle Scholar
Iglesias, C. A. & Rogers, F. J. 1996, ApJ, 464, 943 CrossRefGoogle Scholar
Ivans, I. I., Sneden, C., Gallino, R., Cowan, J. J. & Preston, G. W., 2005, ApJ, 627, L145 CrossRefGoogle Scholar
Iwamoto, N., Kajino, T., Mathews, G. J., Fujimoto, M. Y. & Aoki, W., 2004, ApJ, 602, 377 CrossRefGoogle Scholar
Lambert, D. L., Smith, V. V., Busso, M., Gallino, R. & Straniero, O., 1995, ApJ, 450, 302 CrossRefGoogle Scholar
Lugaro, M. et al., 2008, A&A, 484, L27 Google Scholar
Marigo, P. 2002, A&A, 387, 507 Google Scholar
Mowlavi, N. 1999, A&A, 350, 73 Google Scholar
Plez, B., Smith, V. V. & Lambert, D. L. 1993, ApJ, 418, 812 CrossRefGoogle Scholar
Rauscher, T. & Thielemann, F.-K., 2000, ADNDT, 75, 1 CrossRefGoogle Scholar
Richard, O., Michaud, G. & Richer, J. 2005, ApJ, 619, 538 CrossRefGoogle Scholar
Ritossa, C., Garcia-Berro, E. & Iben, I. J. 1996, ApJ, 460, 489 CrossRefGoogle Scholar
Sackmann, I.-J. & Boothroyd, A. I. 1992, ApJ, 392, L71 CrossRefGoogle Scholar
Sivarani, T. et al., 2004, A&A, 413, 1073 Google Scholar
Sivarani, T. et al., 2006, A&A, 459, 125 Google Scholar
Smith, V. V. & Lambert, D. L. 1989, ApJ, 345, L75 CrossRefGoogle Scholar
Smith, V. V. & Lambert, D. L. 1990, ApJ, 361, L69 CrossRefGoogle Scholar
Spergel, D. N. et al., 2003, ApJS, 148, 175 CrossRefGoogle Scholar
Spergel, D. N. et al., 2007, ApJS, 170, 377 CrossRefGoogle Scholar
Spite, F. & Spite, M. 1982, A&A, 115, 357 Google Scholar
Stancliffe, R. J. 2006, MNRAS, 370, 1817 CrossRefGoogle Scholar
Stancliffe, R. J. & Glebbeek, E. 2008, MNRAS, 389, 1828 CrossRefGoogle Scholar
Stancliffe, R. J., Glebbeek, E., Izzard, R. G. & Pols, O. R. 2007, A&A, 464, L57 Google Scholar
Straniero, O., Cristallo, S., Gallino, R. & Dominguez, I. 2004, MmSAI, 75, 665 Google Scholar
Suda, T., Aikawa, M., Machida, M. N., Fujimoto, M. Y. & Iben, I. J., 2004, ApJ, 611, 476 CrossRefGoogle Scholar
Suda, T. et al., 2008, PASJ, 60, 1159 CrossRefGoogle Scholar
Talon, S. & Charbonnel, C. 1998, A&A, 335, 959 Google Scholar
Thompson, I. B. et al., 2008, ApJ, 677, 556 CrossRefGoogle Scholar
Tumlinson, J. 2007, ApJ, 665, 1361 CrossRefGoogle Scholar
Uttenthaler, S., Lebzelter, T., Palmerini, S., Busso, M., Aringer, B. & Lederer, M. T. 2007, A&A, 471, L41 Google Scholar
Vassiliadis, E. & Wood, P. R. 1993, ApJ, 413, 641 CrossRefGoogle Scholar
Wood, P. R., Bessell, M. S. & Fox, M. W. 1983, ApJ, 272, 99 CrossRefGoogle Scholar
Woodward, P., Herwig, F., Porter, D., Fuchs, T., Nowatzki, A. & Pignatari, M. 2008, AIPC, 990, 300 Google Scholar