Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T11:03:22.611Z Has data issue: false hasContentIssue false

Distance Measurements and Stellar Population Properties via Surface Brightness Fluctuations

Published online by Cambridge University Press:  02 January 2013

Alexander Fritz
Affiliation:
Gemini Observatory, 670 N. A'ohoku Place, Hilo, HI 96720, USA and Istituto Nazionale di Astrofisica– Istituto di Astrofisica Spaziale e Fisica, Cosmica Milano, Via E. Bassini 15, 20133 Milano, Italy. Email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Surface Brightness Fluctuations (SBFs) are one of the most powerful techniques to measure the distance and to constrain the unresolved stellar content of extragalactic systems. For a given bandpass, the absolute SBF magnitude M depends on the properties of the underlying stellar population. Multi-band SBFs allow scientists to probe different stages of the stellar evolution: ultraviolet and blue wavelength band SBFs are sensitive to the evolution of stars within the hot horizontal branch and post-asymptotic giant branch phases, whereas optical SBF magnitudes explore the stars within the red giant branch and horizontal branch regimes. Near- and far-infrared SBF luminosities probe the important stellar evolution stage within the asymptotic giant branch and thermally pulsating asymptotic giant branch phases. Since the first successful application by Tonry and Schneider, a multiplicity of works have used this method to expand the distance scale up to 150 Mpc and beyond. This article gives a historical background of distance measurements, reviews the basic concepts of the SBF technique, presents a broad sample of investigations and discusses possible selection effects, biases, and limitations of the method. In particular, exciting new developments and improvements in the field of stellar population synthesis are discussed that are essential to understand the physics and properties of the populations in unresolved stellar systems. Further, promising future directions of the SBF technique are presented. With new upcoming space-based satellites such as Gaia, the SBF method will remain as one of the most important tools to derive distances to galaxies with unprecedented accuracy and to give detailed insights into the stellar content of globular clusters and galaxies.

Type
Regular Papers
Copyright
Copyright © Astronomical Society of Australia 2012

References

Aaronson, M., et al. , 1989, ApJ, 338, 654Google Scholar
Ajhar, E. A. & Tonry, J. L., 1994, ApJ, 429, 557CrossRefGoogle Scholar
Ajhar, E. A., et al. , 1997, AJ, 114, 626CrossRefGoogle Scholar
Ajhar, E. A., et al. , 2001, ApJ, 559, 584Google Scholar
Baade, W., 1944, ApJ, 100, 137CrossRefGoogle Scholar
Barber DeGraaff, R., Blakeslee, J. P., Meurer, G. R. & Putman, M. E., 2007, ApJ, 671, 1624Google Scholar
Baum, W., 1986, STcI GTO proposal 1114-GTO/WFPGoogle Scholar
Baum, W. A., 1990, in ASP Conf. Ser. 10, Evolution of the Universe of Galaxies, ed. Kron, R. G. (San Francisco: ASP), 119.Google Scholar
Baum, W. A. & Schwarzschild, M., 1955, AJ, 60, 247Google Scholar
Biscardi, I., Raimondo, G., Cantiello, M. & Brocato, E., 2008, ApJ, 678, 168CrossRefGoogle Scholar
Blakeslee, J. P. & Tonry, J. L., 1995, ApJ, 442, 579Google Scholar
Blakeslee, J. P., Ajhar, E. A. & Tonry, J. L., 1999, in Post-Hipparcos Cosmic Candles, ed. Heck, A. & Caputo, F. (Dordrecht: Kluwer), 181Google Scholar
Blakeslee, J. P., et al. , 2001a, MNRAS, 320, 193CrossRefGoogle Scholar
Blakeslee, J. P., Lucey, J.R., Barris, B. J., Hudson, M. J. & Tonry, J.L., 2001b, MNRAS, 327, 1004Google Scholar
Blakeslee, J. P., Lucey, J. R., Tonry, J. L., Hudson, M. J. & Narayanan, V. K., 2002, MNRAS, 330, 443Google Scholar
Blakeslee, J. P., et al. , 2009, ApJ, 694, 556CrossRefGoogle Scholar
Blakeslee, J. P., et al. , 2010, ApJ, 724, 657Google Scholar
Cantiello, M., Blakeslee, J. P., Raimondo, G., Mei, S., Brocato, E. & Capaccioli, M., 2005, ApJ, 634, 239CrossRefGoogle Scholar
Cantiello, M., Blakeslee, J. P., Raimondo, G., Brocato, E. & Capaccioli, M., 2007a, ApJ, 668, 130Google Scholar
Cantiello, M., Raimondo, G., Blakeslee, J. P., Brocato, E. & Capaccioli, M., 2007b, ApJ, 662, 940Google Scholar
Cantiello, M., Brocato, E. & Capaccioli, M., 2011, A&A, 534, A35Google Scholar
Cappellari, M., et al. , 2011, MNRAS, 413, 813Google Scholar
Ciardullo, R., 2006, in Planetary Nebulae beyond the Milky Way, ed. Stanghellini, L., Walsh, J. R. & Douglas, N. G. (Berlin: Springer), 79CrossRefGoogle Scholar
Conroy, C. & Gunn, J. E., 2010, ApJ, 712, 833CrossRefGoogle Scholar
Conroy, C. & Spergel, D. N., 2011, ApJ, 726, 36Google Scholar
Conroy, C., Gunn, J. E. & White, M., 2009, ApJ, 699, 486CrossRefGoogle Scholar
de Vaucouleurs, G., 1961, ApJS, 5, 233Google Scholar
de Zeeuw, P. T., et al. , 2002, MNRAS, 329, 513Google Scholar
Djorgovski, S. & Davis, M., 1987, ApJ, 313, 59CrossRefGoogle Scholar
Dorfi, E. A. & Hoefner, S., 1998, in Rev. Modern Astron. 11, Stars and Galaxies, ed. Schielicke, R. E. (Hamburg: Astronomische Gesellschaft), 147Google Scholar
Dressler, A., Lynden-Bell, D., Burstein, D., Davies, R. L., Faber, S. M., Terlevich, R. & Wegner, G., 1987, ApJ, 313, 42Google Scholar
Dunn, L. P. & Jerjen, H., 2006, AJ, 132, 1384Google Scholar
Freedman, W. L., 1989, AJ, 98, 1285CrossRefGoogle Scholar
Freedman, W. L. & Madore, B. F., 2010, ARA&A, 48, 673Google Scholar
Freedman, W. L., et al. , 2001, ApJ, 553, 47CrossRefGoogle Scholar
Fritz, A., 2000, Diploma Thesis, University of ViennaGoogle Scholar
Fritz, A., 2002, BaltA, 11, 385Google Scholar
Fritz, A., Ziegler, B. L., Bower, R. G., Smail, I. & Davies, R. L., 2005, MNRAS, 358, 233CrossRefGoogle Scholar
Fritz, A., Böhm, A. & Ziegler, B. L., 2009a, MNRAS, 393, 1467CrossRefGoogle Scholar
Fritz, A., Jørgensen, I., Schiavon, R. P. & Chiboucas, K., 2009b, AN, 330, 931Google Scholar
Giovanelli, R., et al. , 1997, AJ, 113, 53CrossRefGoogle Scholar
González-Lópezlira, R. A., Albarrán, M. Y., Mouhcine, M., Liu, M. C., Bruzual, A.G. & de Batz, B., 2005, MNRAS, 363, 1279Google Scholar
González-Lóopezlira, R. A., et al. , 2010, MNRAS, 403, 1213CrossRefGoogle Scholar
Hu, W., 2005, in ASP Conf. Ser. 339, Observing Dark Energy, ed. Wolff, S. C. & Lauer, T. R. (San Francisco: ASP), 215Google Scholar
Hubble, E. P., 1926, ApJ, 63, 236Google Scholar
Hubble, E., 1929, PNAS, 15, 168CrossRefGoogle Scholar
Hubble, E. & Humason, M. L., 1931, ApJ, 74, 43Google Scholar
Iben, I. Jr, & Renzini, A., 1983, ARA&A, 21, 271Google Scholar
Jacoby, G. H., et al. , 1992, PASP, 104, 599CrossRefGoogle Scholar
Jensen, J. B., Luppino, G. A. & Tonry, J. L., 1996, ApJ, 468, 519Google Scholar
Jensen, J. B., Tonry, J. L. & Luppino, G. A., 1998, ApJ, 505, 111CrossRefGoogle Scholar
Jensen, J. B., Tonry, J. L. & Luppino, G. A., 1999, ApJ, 510, 71Google Scholar
Jensen, J. B., et al. , 2001, ApJ, 550, 503CrossRefGoogle Scholar
Jensen, J. B., et al. , 2003, ApJ, 583, 712CrossRefGoogle Scholar
Jerjen, H., Rekola, R., Takalo, L., Coleman, M. & Valtonen, M., 2001, A&A, 380, 90Google Scholar
Jerjen, H., Binggeli, B. & Barazza, F. D., 2004, AJ, 127, 771CrossRefGoogle Scholar
Leavitt, H. S., 1908, AnHar, 60, 87Google Scholar
Lee, H.-c., Worthey, G. & Blakeslee, J. P., 2010, ApJ, 710, 421Google Scholar
Lemaître, G., 1927, ASSB, 47, 49Google Scholar
Liu, M. C., Charlot, S. & Graham, J. R., 2000, ApJ, 543, 644Google Scholar
Liu, M. C., Graham, J. R. & Charlot, S., 2002, ApJ, 564, 216Google Scholar
Loidl, R., Lançon, A & Jørgensen, U. G., 2001, A&A, 371, 1065Google Scholar
Lorenz, H., Bohm, P., Capaccioli, M., Richter, G. M. & Longo, G., 1993, A&A, 277, L15Google Scholar
Luppino, G. A. & Tonry, J. L., 1993, ApJ, 410, 81CrossRefGoogle Scholar
Lynden-Bell, D., Faber, S.M., Burstein, D., Davies, R.L., Dressler, A., Terlevich, R. & Wegner, G., 1988, ApJ, 326, 19Google Scholar
Macri, L. M., Stanek, K. Z., Bersier, D., Greenhill, L. J. & Reid, M. J., 2006, ApJ, 652, 1133CrossRefGoogle Scholar
Maraston, C., 2005, MNRAS, 362, 799Google Scholar
Maraston, C., et al. , 2006, ApJ, 652, 85Google Scholar
Marigo, P., Girardi, L., Bressan, A., Groenewegen, M. A. T., Silva, L. & Granato, G. L., 2008, A&A, 482, 883Google Scholar
Mei, S., et al. , 2001, A&A, 366, 54Google Scholar
Mei, S., et al. , 2005, ApJ, 625, 121Google Scholar
Mei, S., et al. , 2007, ApJ, 655, 144CrossRefGoogle Scholar
Mieske, S., Hilker, M. & Infante, L., 2006, A&A, 458, 1013Google Scholar
Mieske, S., Hilker, M., Infante, L. & Mendes de Oliveira, C., 2007, A&A, 463, 503Google Scholar
Mouhcine, M., González, R. A. & Liu, M. C., 2005, MNRAS, 362, 1208CrossRefGoogle Scholar
Mould, J., Kristian, J. & Da Costa, G. S., 1983, ApJ, 270, 471CrossRefGoogle Scholar
Mould, J., Kristian, J. & Da Costa, G. S., 1984, ApJ, 278, 575Google Scholar
Mould, J. R., et al. , 2000, ApJ, 529, 786Google Scholar
Pahre, M. A. & Mould, J. R., 1994, ApJ, 433, 567Google Scholar
Pahre, M. A., et al. , 1999, ApJ, 515, 79Google Scholar
Peletier, R. F., Davies, R. L., Illingworth, G. D., Davis, L. E. & Cawson, M., 1990, AJ, 100, 1091CrossRefGoogle Scholar
Pritchet, C. J. & van den Bergh, S., 1988, ApJ, 331, 135Google Scholar
Raimondo, G., 2009, ApJ, 700, 1247Google Scholar
Raimondo, G., Brocato, E., Cantiello, M. & Capaccioli, M., 2005, AJ, 130, 2625Google Scholar
Riess, A. G., et al. , 2009, ApJ, 699, 539CrossRefGoogle Scholar
Riess, A. G., et al. , 2011, ApJ, 730, 119Google Scholar
Sakai, S., Ferrarese, L., Kennicutt, R. C. Jr, & Saha, A., 2004, ApJ, 608, 42CrossRefGoogle Scholar
Sandage, A. R. & Tammann, G. A., 1982, ApJ, 256, 339Google Scholar
Schlegel, D. J., Finkbeiner, D. P. & Davis, M., 1998, ApJ, 500, 525Google Scholar
Scowcroft, V., Bersier, D., Mould, J. R. & Wood, P. R., 2009, MNRAS, 396, 1287Google Scholar
Shapley, H., 1919, ApJ, 50, 107Google Scholar
Shopbell, P. L., Bland-Hawthorn, J. & Malin, D. F., 1993, AJ, 106, 1344Google Scholar
Simard, L. & Pritchet, C. J., 1994, ApJ, 107, 503Google Scholar
Sodemann, M. & Thomsen, B., 1995, AJ, 110, 179Google Scholar
Sodemann, M. & Thomsen, B., 1996, AJ, 111, 208Google Scholar
Tonry, J. L., 1991, ApJ, 373, L1CrossRefGoogle Scholar
Tonry, J. L. & Schneider, D. P., 1988, AJ, 96, 807Google Scholar
Tonry, J. L., Ajhar, E. A. & Luppino, G. A., 1990, AJ, 100, 1416 (TAL90)Google Scholar
Tonry, J. L., Blakeslee, J. P., Ajhar, E. A. & Dressler, A., 1997, ApJ, 475, 399Google Scholar
Tonry, J. L., Blakeslee, J. P., Ajhar, E. A. & Dressler, A., 2000, ApJ, 530, 625Google Scholar
Tonry, J. L., Dressler, A., Blakeslee, J. P., Ajhar, E. A., Fletcher, A. B., Luppino, G. A., Metzger, M. R. & Moore, C. B., 2001, ApJ, 546, 681Google Scholar
Vassiliadis, E. & Wood, P. R., 1993, ApJ, 413, 641CrossRefGoogle Scholar
Weinberg, D. H., et al. , 2012, preprint (arXiv:1201.2434)Google Scholar
Worthey, G., 1993, ApJ, 409, 530Google Scholar
Worthey, G., Faber, S. M. & Gonzalez, J. J., 1992, ApJ, 398, 69Google Scholar
Ziegler, B. L., Thomas, D., Böhm, A., Bender, R., Fritz, A. & Maraston, C., 2005, A&A, 433, 519Google Scholar