Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T06:07:58.030Z Has data issue: false hasContentIssue false

A Cyclotron Theory for the Beaming Pattern of Jupiter’s Decametric Radio Emission

Published online by Cambridge University Press:  25 April 2016

R. G. Hewitt
Affiliation:
Department of Theoretical Physics, University of Sydney
D. B. Melrose
Affiliation:
Department of Theoretical Physics, University of Sydney
K. G. Rönnmark
Affiliation:
Department of Theoretical Physics, University of Sydney

Extract

Ground-based observations of Jupiter’s decametric radio emission (DAM) have been reviewed by Ellis (1965), Warwick (1967, 1970) and Carr and Gulkis (1969). A startling feature of DAM is the modulating effect of Io, and interpretation of the Io effect has dominated theoretical discussions of DAM until quite recently, specifically until the fly-by s of Voyagers 1 and 2. The Voyager data showed that the DAM appears as nested arcs in the frequency-Jovian longitude plane (Warwick et al. 1979, Boischot et al. 1981). The interpretation of this arc structure has been of primary theoretical interest over the past two years. The most widely adopted explanation is that the emission from each point is confined to the surface of a hollow cone (Goldstein and Thieman 1981). This idea is not new: emission on the surface of a cone was discussed by Ellis and McCulloch (1963); Dulk (1967) derived detailed parameters for the cone (half angle 79° width 1°) from the occurrence pattern of DAM; and Goldreich and Lynden-Bell (1969) presented a theoretical interpretation of it. More recently Goldstein et al. (1979) used observational data on the Jovian magnetic field in deriving properties of the required emission cone. It seems that one requires the properties of the emission cone to vary with position in the Jovian magnetosphere to account for the nested arc pattern (Goldstein and Thieman 1981; Gurnett and Goertz 1981).

Type
Contributions
Copyright
Copyright © Astronomical Society of Australia 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boischot, A., Lecacheux, A., Kaiser, M. L., Desch, M. D., Alexander, J. K., and Warwick, J. W., in press, (1981).Google Scholar
Broadfoot, A. L., Belton, M. J. S., Takacs, P. Z., Sandel, B. L., Shemansky, D. E., Holberg, J. B., Ajello, J. M., Atreva, S. K., Donahue, T. M., Moos, H. W., Bertaux, J. L., Blamont, J. E., Strobel, D. F., McConnell, J. C., Dalgarno, A., Goody, R., and McElroy, M. B., Science, 204, 979 (1979).Google Scholar
Carr, T. D., and Gulkis, S., Annu. Rev. Astron. Astrophys., 7, 577 (1969).Google Scholar
Dory, R. A., Guest, G. E., and Harris, E. G., Phys. Rev. Lett., 14, 131 (1965).Google Scholar
Dulk, G. A., Icarus, 7, 173 (1967).Google Scholar
Ellis, G. R. A., Radis Science 69 D, 1513 (1965).Google Scholar
Ellis, G. R. A., and McCulIoch, P. M., Aust. J. Phys., 16, 380 (1963).Google Scholar
Fung, P. C. W., Planet. Space Sci., 14, 469 (1966).CrossRefGoogle Scholar
Goertz, C. K., J. Geophys. Res., (1980).Google Scholar
Goldreich, P., and Lynden-Bell, D., Astrophys. J., 156, 59 (1969).Google Scholar
Goldstein, M. L., and Eviatar, A., Astrophys. J., 175, 275 (1972).Google Scholar
Goldstein, M. L., and Eviatar, A., Astrophys. J., 230, 261 (1979).Google Scholar
Goldstein, M. L., Eviatar, A., and Thieman, J. R., Astrophys. J., 229, 1186 (1979).CrossRefGoogle Scholar
Goldstein, M. L., and Thieman, J. R., in press, (1981).Google Scholar
Gurnett, D. A., and Goertz, C. K., J. Geophys. Res., 86A, 717 (1981).Google Scholar
Lee, L. C., Kan, J. R., and Wu, C. S., Planet. Space Sci., 28, 703 (1980).Google Scholar
Melrose, D. B., Astrophys. J., 207, 651 (1976).Google Scholar
Melrose, D. B., Plasma Astrophysics, Vol. II, Gordon and Breach (New York 1980).Google Scholar
Neubauer, F. M., J. Geophys. Res., 85, 1171 (1980).Google Scholar
Smith, R. A., in Gehrels, T. (ed.), Jupiter, Univ. of Arizona Press (Tucson), p. 1146 (1976). Warwick, J. W., Space Sci. Rev., 6, 841 (1967).Google Scholar
Warwick, J. W., Particles and Fields near Jupiter, NASA CR-1685 (1970).Google Scholar
Warwick, J. W., Pearce, J. B., Riddle, A. C., Alexander, J. K., Desch, M. D., Kaiser, M. L., Thieman, J. R., Carr, T. D., Gulkis, S., Boischot, A., Harvey, C. C., and Petersen, B. M., Science, 204, 995 (1979).Google Scholar
Wu, C. S., and Lee, L. C., Astrophys. J., 230, 621 (1979).Google Scholar