Published online by Cambridge University Press: 05 March 2013
We present a detailed inhomogeneous chemical evolution study that considers for the first-time neutron star mergers as major r-process sources, and compare this scenario with the ones in which lower-mass (in the range 8–10 M⊙) or higher-mass core-collapse supernovae (with masses ≥20 M⊙) act as dominant r-process sites. We conclude that it is not possible at present to distinguish between the lower-mass and higher-mass supernovae scenarios within the framework of inhomogeneous chemical evolution. However, neutron-star mergers seem to be ruled out as the dominant r-process source, since their low rates of occurrence would lead to r-process enrichment that is not consistent with observations.