Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-13T22:33:34.915Z Has data issue: false hasContentIssue false

Chemical Evolution of the Juvenile Universe

Published online by Cambridge University Press:  05 March 2013

G. J. Wasserburg*
Affiliation:
Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
Y.-Z. Qian
Affiliation:
School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA
*
CCorresponding author. Email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Models of average Galactic chemical abundances are in good general agreement with observations for [Fe/H] > –1.5, but there are gross discrepancies at lower metallicities. Only massive stars contribute to the chemical evolution of the ‘juvenile universe’ corresponding to [Fe/H] ≲ –1.5. If Type II supernovae (SNe II) are the only relevant sources, then the abundances in the interstellar medium of the juvenile epoch are simply the sum of different SN II contributions. Both low-mass (∼8–11 M) and normal (∼12–25 M) SNe II produce neutron stars, which have intense neutrino-driven winds in their nascent stages. These winds produce elements such as Sr, Y and Zr through charged-particle reactions (CPR). Such elements are often called the ‘light r-process elements’, but are considered here as products of CPR and not the r process. The observed absence of production of the low-A elements (Na through Zn including Fe) when the true r-process elements (Ba and above) are produced requires that only low-mass SNe II be the site if the r process occurs in SNe II. Normal SNe II produce the CPR elements in addition to the low-A elements. This results in a two-component model that is quantitatively successful in explaining the abundances of all elements relative to hydrogen for –3 ≲ [Fe/H] ≲ –1.5. This model explicitly predicts that [Sr/Fe] ≥ –0.32. Recent observations show that there are stars with [Sr/Fe] ≲ –2 and [Fe/H] < –3. This proves that the two-component model is not correct and that a third component is necessary to explain the observations. The production of CPR elements associated with the formation of neutron stars requires that the third component must be massive stars ending as black holes. It is concluded that stars of ∼25–50 M (possibly up to ∼100 M) are the appropriate candidates. These produce hypernovae (HNe) that have very high Fe yields and are observed today. Stars of ∼140–260 M are completely disrupted upon explosion. However, they produce an abundance pattern greatly deficient in elements of odd atomic numbers, which is not observed, and therefore they are not considered as a source here. Using a Salpeter initial mass function, it is shown that HNe are a source of Fe that far outweighs normal SNe II, with the former and the latter contributing ∼24% and ∼9% of the solar Fe abundance, respectively. It follows that the usual assignment of ∼⅓ of the solar Fe abundance to normal SNe II is not correct. This leads to a simple three-component model including low-mass and normal SNe II and HNe, which gives a good description of essentially all the data for stars with [Fe/H] ≲ –1.5. We conclude that HNe are more important than normal SNe II in the chemical evolution of the low-A elements from Na through Zn (including Fe), in sharp distinction to earlier models.

Type
Theory, Evolution and Models
Copyright
Copyright © Astronomical Society of Australia 2009

References

Abel, T., Bryan, G. L. & Norman, M. L., 2002, Sci, 295, 93 Google Scholar
Aoki, W. et al., 2005, ApJ, 632, 611 Google Scholar
Arlandini, C., Käppeler, F., Wisshak, K., Gallino, R., Lugaro, M., Busso, M. & Straniero, O., 1999, ApJ, 525, 886 Google Scholar
Barklem, P. S. et al., 2005, A&A, 439, 129 Google Scholar
Bromm, V. & Larson, R. B., 2004, ARA&A, 42, 79 Google Scholar
Burbidge, E. M., Burbidge, G. R., Fowler, W. A. & Hoyle, F., 1957, RvMP, 29, 547 Google Scholar
Busso, M., Gallino, R. & Wasserburg, G. J., 1999, ARA&A, 37, 239 Google Scholar
Cameron, A. G. W., 1957, Chalk River Rep. CRL-41Google Scholar
Cayrel, R. et al., 2004, A&A, 416, 1117 Google Scholar
Cohen, J. G., Christlieb, N., McWilliam, A., Shectman, S., Thompson, I., Melendez, J., Wisotzki, L. & Reimers, D., 2008, ApJ, 672, 320 Google Scholar
Farouqi, K., Kratz, K.-L., Mashonkina, L. I., Pfeiffer, B., Cowan, J. J., Thielemann, F.-K. & Truran, J. W., 2009, ApJ, 694, L49 Google Scholar
François, P. et al., 2007, A&A, 476, 935 Google Scholar
Freiburghaus, C., Rembges, J.-F., Rauscher, T., Kolbe, E., Thielemann, F.-K., Kratz, K.-L., Pfeiffer, B. & Cowan, J. J., 1999, ApJ, 516, 381 Google Scholar
Fulbright, J. P., Rich, R. M. & Castro, S., 2004, ApJ, 612, 447 Google Scholar
Galama, T. J. et al., 1998, Natur, 395, 670 Google Scholar
Hill, V. et al., 2002, A&A, 387, 560 Google Scholar
Honda, S., Aoki, W., Kajino, T., Ando, H., Beers, T. C., Izumiura, H., Sadakane, K. & Takada-Hidai, M., 2004, ApJ, 607, 474 Google Scholar
Käppeler, F., Beer, H. & Wisshak, K., 1989, RPPh, 52, 945 Google Scholar
Kratz, K.-L., Bitouzet, J.-P., Thielemann, F.-K., Moeller, P. & Pfeiffer, B., 1993, ApJ, 403, 216 Google Scholar
Johnson, J. A. & Bolte, M., 2002, ApJ, 579, 616 CrossRefGoogle Scholar
McWilliam, A., Preston, G. W., Sneden, C. & Shectman, S., 1995, AJ, 109, 2757 Google Scholar
Meyer, B. S. & Brown, J. S., 1997, ApJS, 112, 197 Google Scholar
Montes, F. et al., 2007, ApJ, 671, 1685 Google Scholar
Ning, H., Qian, Y.-Z. & Meyer, B. S., 2007, ApJ, 667, L159 Google Scholar
Nomoto, K., 1987, ApJ, 322, 206 Google Scholar
Ott, U. & Kratz, K.-L., 2008, NewAR, 52, 396 Google Scholar
Qian, Y.-Z., 2003, PrPNP, 50, 153 Google Scholar
Qian, Y.-Z. & Wasserburg, G. J., 2000, Phys. Rep., 333, 77 Google Scholar
Qian, Y.-Z. & Wasserburg, G. J., 2001, ApJ, 559, 925 Google Scholar
Qian, Y.-Z. & Wasserburg, G. J., 2002, ApJ, 567, 515 Google Scholar
Qian, Y.-Z. & Wasserburg, G. J., 2003, ApJ, 588, 1099 Google Scholar
Qian, Y.-Z. & Wasserburg, G. J., 2004, ApJ, 612, 615 Google Scholar
Qian, Y.-Z. & Wasserburg, G. J., 2007, Phys. Rep., 442, 237 Google Scholar
Qian, Y.-Z. & Wasserburg, G. J., 2008, ApJ, 687, 272 Google Scholar
Qian, Y.-Z., Vogel, P. & Wasserburg, G. J., 1998, ApJ, 494, 285 Google Scholar
Sneden, C., Cowan, J. J., Ivans, I. I., Fuller, G. M., Burles, S., Beers, T. C. & Lawler, J. E., 2000, ApJ, 533, L139 Google Scholar
Timmes, F. X., Woosley, S. E. & Weaver, T.A., 1995, ApJS, 98, 617 Google Scholar
Tominaga, N., Umeda, H. & Nomoto, K., 2007, ApJ, 660, 516 Google Scholar
Travaglio, C., Gallino, R., Arnone, E., Cowan, J., Jordan, F. & Sneden, C., 2004, ApJ, 601, 864 Google Scholar
Wasserburg, G. J., Busso, M. & Gallino, R., 1996, ApJ, 466, L109 Google Scholar
Westin, J., Sneden, C., Gustafsson, B. & Cowan, J. J., 2000, ApJ, 530, 783 CrossRefGoogle Scholar
Woosley, S. E., Wilson, J. R., Mathews, G. J., Hoffman, R. D. & Meyer, B. S., 1994, ApJ, 433, 229 Google Scholar
Woosley, S. E., Heger, A. & Weaver, T. A., 2002, RvMP, 74, 1015 Google Scholar
Woosley, S. E. & Hoffman, R. D., 1992, ApJ, 395, 202 Google Scholar