Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-25T16:57:32.110Z Has data issue: false hasContentIssue false

The Chemical Evolution of Magnesium Isotopic Abundances in the Solar Neighbourhood

Published online by Cambridge University Press:  05 March 2013

Y. Fenner*
Affiliation:
Centre for Astrophysics and Supercomputing, Swinburne University, Hawthorn, Victoria 3122, Australia UCO/Lick Observatory, University of California Santa Cruz, Santa Cruz, California 95064, USA
B. K. Gibson
Affiliation:
Centre for Astrophysics and Supercomputing, Swinburne University, Hawthorn, Victoria 3122, Australia
H.-c. Lee
Affiliation:
Centre for Astrophysics and Supercomputing, Swinburne University, Hawthorn, Victoria 3122, Australia
A. I. Karakas
Affiliation:
Centre for Stellar and Planetary Astrophysics, Monash University, Victoria 3800, Australia
J. C. Lattanzio
Affiliation:
Centre for Stellar and Planetary Astrophysics, Monash University, Victoria 3800, Australia
A. Chieffi
Affiliation:
Centre for Astrophysics and Supercomputing, Swinburne University, Hawthorn, Victoria 3122, Australia Centre for Stellar and Planetary Astrophysics, Monash University, Victoria 3800, Australia Istituto di Astrofisica Spaziale e Fisica Cosmica, Via Fosso del Cavaliere, I-00133, Roma, Italy
M. Limongi
Affiliation:
Centre for Astrophysics and Supercomputing, Swinburne University, Hawthorn, Victoria 3122, Australia Centre for Stellar and Planetary Astrophysics, Monash University, Victoria 3800, Australia Istituto Nazionale di Astrofisica — Osservatorio Astronomico di Roma, Via Frascati 33, I-00040, Monteporzio Catone, Italy
D. Yong
Affiliation:
Department of Astronomy, University of Texas, Austin TX 78712, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The abundance of the neutron-rich magnesium isotopes observed in metal-poor stars is explained quantitatively with a chemical evolution model of the local Galaxy that considers — for the first time — the metallicity-dependent contribution from intermediate mass stars. Previous models that simulate the variation of Mg isotopic ratios with metallicity in the solar neighbourhood have attributed the production of 25Mg and 26Mg exclusively to hydrostatic burning in massive stars. These models match the data well for [Fe/H] > –1.0 but severely underestimate 25,26Mg/24Mg at lower metallicities. Earlier studies have noted that this discrepancy may indicate a significant role played by intermediate mass stars. Only recently have detailed calculations of intermediate mass stellar yields of 25Mg and 26Mg become available with which to test this hypothesis. In an extension of previous work, we present a model that successfully matches the Mg isotopic abundances in nearby Galactic disk stars through the incorporation of nucleosynthesis predictions of Mg isotopic production in asymptotic giant branch stars.

Type
Sixth Torino Workshop
Copyright
Copyright © Astronomical Society of Australia 2003

References

Alibes, A., Labay, J., & Canal, R. 2001, A&A, 370, 1103 Google Scholar
Gay, P. L., & Lambert, D. L. 2000, ApJ, 533, 260 Google Scholar
Goswami, A., & Prantzos, N. 2000, A&A, 359, 191 Google Scholar
Imbriani, G., Limongi, M., Gialanella, L., Terrasi, F., Straniero, O., & Chieffi, A. 2001, ApJ, 558, 903 Google Scholar
Iwamoto, K., Brachwitz, F., Nomoto, K., Kishimoto, N., Umeda, H., Hix, W. R., & Thielemann, F.-K. 1999, ApJS, 125, 439 Google Scholar
Karakas, A. I., & Lattanzio, J. C. 2003a, Origin and Evolution of the Elements, Carnegie Observatories Astrophysics Series Volume 4, ed. McWilliam, A. & Rauch, M. (Pasadena: Carnegie Observatories), http://www.ociw.edu/ociw/symposia/series/symposium-4/proceedings.html Google Scholar
Karakas, A. I., & Lattanzio, J. C. 2003b, PASA, 20, 279 Google Scholar
Kroupa, P., Tout, C. A., & Gilmore, G. 1993, MNRAS, 262, 545 Google Scholar
Kroupa, P. 2001, MNRAS, 322, 231 CrossRefGoogle Scholar
Kunz, R., Fey, M., Jaeger, M., Mayer, A., Hammer, J. W., Staudt, G., Harissopulos, S., & Paradellis, T. 2002, ApJ, 567, 643 Google Scholar
Larson, R. B. 1998, MNRAS, 301, 569 Google Scholar
Limongi, M., & Chieffi, A. 2002, PASA, 19, 246 Google Scholar
Limongi, M., & Chieffi, A. 2003, ApJ, in press (astro-ph/0304185)Google Scholar
Limongi, M., Straniero, O., & Chieffi, A. 2000, ApJS, 129, 625 Google Scholar
Matteucci, F., & Greggio, L. 1986, A&A, 154, 279 Google Scholar
Prantzos, N., & Silk, J. 1998, ApJ, 507, 229 Google Scholar
Salpeter, E. E. 1955, ApJ, 121, 161 Google Scholar
Scalo, J. M. 1986, FCPh, 11, 1 Google Scholar
Timmes, F. X., Woosley, S. E., & Weaver, T. A. 1995, ApJS, 98, 617 Google Scholar
Woosley, S. E., & Weaver, T. A. 1995, ApJS, 101, 181 Google Scholar
Yong, D., & Lambert, D. L. 2003, PASP, 115, 22 Google Scholar