Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-25T17:19:20.930Z Has data issue: false hasContentIssue false

Catalogue of J = 1−0 CO Emission towards Southern Dark Clouds

Published online by Cambridge University Press:  05 March 2013

R. E. Otrupcek
Affiliation:
Mopra Radio Observatory, ATNF, CSIRO, PO Box 309, Coonabarabran, NSW 2357, Australia; [email protected]
M. Hartley
Affiliation:
UK Schmidt Telescope, Siding Spring Observatory, Coonabarabran, NSW 2357, Australia
J.-S. Wang
Affiliation:
Purple Mountain Observatory, Academia Sinica, Nanjing, China
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Using the 22-m ‘Mopra’ antenna (near Coonabarabran, NSW) of the Australia Telescope National Facility (ATNF), we have observed emission from the 115-GHz J = 1−0 transition of CO towards the centre of each of the 1101 clouds listed in the Catalogue of Southern Dark Clouds (SDC) of Hartley et al. (1986). The velocity range covered was −96 to +70 km s−1, with a velocity resolution of 0· 120 km s−1. CO was detected at 1049 of the positions, with 367 spectra showing emission at more than one radial velocity. Here we present the most comprehensive general survey of the SDC catalogue, with the intensity, velocity and half-width of the CO detection and a code describing the profile shape. The presence of blue- or red-shifted wings in many observations can provide a starting point in searches for star-forming regions.

Type
Research Article
Copyright
Copyright © Astronomical Society of Australia 2000

References

Blitz, L. 1991, in The Physics of Star Formation and Early Stellar Evolution, ed. C. J. Lada & N. D. Kylafis (Dordrecht: Kluwer), p. 3 CrossRefGoogle Scholar
Bok, B. 1977, PASP, 89, 597 Google Scholar
Goss, W. M., Manchester, R. N., Brooks, J. W., Sinclair, M. W., & Manefield, G.-A. 1980, MNRAS, 191, 533.CrossRefGoogle Scholar
Hartley, M., Manchester, R. N., Smith, R. M., Tritton, S. B., & Goss, W. M. 1986, A&AS, 63, 27 Google Scholar
Kramer, C., Zimmermann, T., Stutzki, J., & Winnewisser, G. 1993, in The Physics and Chemistry of Interstellar Molecular Clouds, ed. G. Winnewisser & G. Pelz (Berlin: Springer), p. 132 Google Scholar
Lada, C. J. 1985, ARA&A, 23, 267 Google Scholar
Morris, M. 1975, AJ, 197, 603 CrossRefGoogle Scholar
Nyman, L. A. 1991, in Low Mass Star Formation in Southern Molecular Clouds, ESO Scientific Report 11, ed. B. Reipurth, p. 119 Google Scholar
Robinson, B. J., Manchester, R. N., Whiteoak, J. B., Otrupcek, R. E., & McCutcheon, W. H. 1988, A&AS, 193, 60 Google Scholar
van Dishoeck, E. F., & Black, J. H. 1987, in Physical Processes in Interstellar Clouds, ed. G. E. Morfill & M. Scholer (Dordreicht: Reidel), p. 241 CrossRefGoogle Scholar
Williams, J., de Geus, E., & Blitz, L. 1993, in The Physics and Chemistry of Interstellar Molecular Clouds, ed. G. Winnewisser & G. Pelz (Berlin: Springer), p. 312 Google Scholar
Wilson, W. E., Davis, E. R., Loone, D. G., & Brown, D. R. 1992, J. Electr. Electron. Eng. Aust., 12, 187 Google Scholar