Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-27T12:23:03.301Z Has data issue: false hasContentIssue false

The Adventures of the Rocketeer: Accelerated Motion Under the Influence of Expanding Space*

Published online by Cambridge University Press:  02 January 2013

Juliana Kwan*
Affiliation:
Sydney Institute for Astronomy, School of Physics, A28, The University of Sydney, NSW 2006
Geraint F. Lewis
Affiliation:
Sydney Institute for Astronomy, School of Physics, A28, The University of Sydney, NSW 2006
J. Berian James
Affiliation:
Institute for Astronomy, Royal Observatory, Edinburgh EH9 3HJ, UK Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, 2100 Copenhagen, Denmark
*
DCorresponding author. Email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

It is well known that interstellar travel is bounded by the finite speed of light, but on very large scales any rocketeer would also need to consider the influence of cosmological expansion on their journey. This paper examines accelerated journeys within the framework of Friedmann–Lemaître–Robertson–Walker universes, illustrating how the duration of a fixed acceleration sharply divides exploration over interstellar and intergalactic distances. Furthermore, we show how the universal expansion increases the difficulty of intergalactic navigation, with small uncertainties in cosmological parameters resulting in significantly large deviations. This paper also shows that, contrary to simplistic ideas, the motion of any rocketeer is indistinguishable from Newtonian gravity if the acceleration is kept small.

Type
Research Article
Copyright
Copyright © Astronomical Society of Australia 2010

Footnotes

*

Research undertaken as part of the Commonwealth Cosmology Initiative (CCI: www.thecci.org), an international collaboration supported by the Australian Research Council.

References

Abramowicz, M. A., Bajtlik, S., Lasota, J.-P. & Moudens, A., 2007, AcA, 51, 139Google Scholar
Abramowicz, M. A., 2008, NewAR, 51, 799CrossRefGoogle Scholar
Abramowicz, M. A., Bajtlik, S., Lasota, J.-P. & Moudens, A., 2009, AcA, 59, 131Google Scholar
Barnes, L. A., Francis, M. J., James, J. B. & Lewis, G. F., 2006, MNRAS, 373, 382CrossRefGoogle Scholar
Bender, C. M. & Orszag, S. A., 1978, Advanced Mathematical Methods for Scientists and Engineers: Asymptotic Methods and Perturbation Theory (New York: McGraw-Hill Press)Google Scholar
Bunn, E. F. & Hogg, D. W., 2009, AmJPh, 77, 688Google Scholar
Calder, L. & Lahav, O., 2008, A&G, 49, 010000Google Scholar
de Sitter, W., 1917, KNAB, 19, 1217Google Scholar
Francis, M. J., Barnes, L. A., James, J. B. & Lewis, G. F., 2007, PASA, 24, 95CrossRefGoogle Scholar
Grøn, Ø., 2006, EJPh, 27, 561Google Scholar
Grøn, Ø. & Elgarøy, Ø., 2007, AmJPh, 75, 151Google Scholar
Heyl, J. S., 2005, PhRvD, 72, 107302Google Scholar
Infeld, L. & Schild, A., 1945, PhRv, 68, 250Google Scholar
Krauss, L. M. & Scherrer, R. J., 2007, GReGr, 39, 1545CrossRefGoogle Scholar
Lewis, G. F., Francis, M. J., Barnes, L. A., Kwan, J. & James, J. B., 2008, MNRAS, 388, 960CrossRefGoogle Scholar
Lewis, G. F., Francis, M. J., Barnes, L. A. & James, J. B., 2007, MNRAS, 381, L50CrossRefGoogle Scholar
Loeb, A., 2002, PhRvD, 65, 047301-1Google Scholar
Milne, E. A., 1932, Natur, 130, 9CrossRefGoogle Scholar
Perlmutter, S. et al. , 1999, ApJ, 517, 565CrossRefGoogle Scholar
Riess, A. G. et al. , 1998, ApJ, 116, 1009CrossRefGoogle Scholar
Rindler, W., 1960, PhRv, 119, 2082Google Scholar
Rindler, W., 2006, Relativity: Special, General, Cosmological (2nd edn) (Oxford: Oxford University Press)CrossRefGoogle Scholar
Tipler, F. J., 1996, MNRAS, 282, 206CrossRefGoogle Scholar
Whiting, A. B., 2004, Obs, 124, 174Google Scholar