Hostname: page-component-669899f699-2mbcq Total loading time: 0 Render date: 2025-04-27T00:05:49.189Z Has data issue: false hasContentIssue false

Multi-band optical variability on diverse timescales of blazar 1E 1458.8+2249

Published online by Cambridge University Press:  19 September 2024

Aykut Özdönmez*
Affiliation:
Department of Astronomy and Space Science, Faculty of Science, Atatürk University, Yakutiye, Erzurum, Türkiye
Murat Tekkeşinoğlu
Affiliation:
Department of Astronomy and Astrophysics, Graduate School of Natural and Applied Sciences, Atatürk University, Yakutiye, Erzurum, Türkiye
*
Corresponding author: Aykut Özdönmez; Email: [email protected]

Abstract

This study presents an analysis of the optical variability of the blazar 1E 1458.8+2249 on diverse timescales using multi-band observations, including observations in the optical BVRI bands carried out with the T60 and T100 telescopes from 2020 to 2023 and ZTF gri data from 2018 to 2023. On seven nights, we searched for intraday variability using the power-enhanced F-test and the nested ANOVA test, but no significant variability was found. The long-term light curve shows a variability behaviour in the optical BVRI bands with amplitudes of $\sim$100% and in the gri bands with amplitudes of $\sim$120%, including short-term variability of up to $\sim$1.1 mag. Correlation analysis revealed a strong correlation between the optical multi-band emissions without any time lag. From 62 nightly spectral energy distributions, we obtained spectral indices between 0.826 and 1.360, with an average of $1.128\pm0.063$. The relationships of both spectral indices and colour with respect to brightness indicate a mild BWB trend throughout the observation period, both intraday and long-term. We also performed a periodicity search using the weighted wavelet Z-transform and Lomb–Scargle methods. A recurrent optical emission pattern with a quasi-periodicity of $\sim$340 days is detected in the combined V- and R-band light curves. The observational results indicate that the blazar 1E 1458.8+2249 has a complex variability, while emphasising the need for future observations to unravel its underlying mechanisms.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Astronomical Society of Australia

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abdo, A. A., et al. 2010, ApJ, 716, 30Google Scholar
Agarwal, A., & Gupta, A. C. 2015, MNRAS, 450, 541Google Scholar
Agarwal, A., et al. 2022, ApJ, 933, 42Google Scholar
Agarwal, A., et al. 2019, MNRAS, 488, 4093Google Scholar
Agarwal, A., et al. 2021, A&A, 645, A137Google Scholar
Astropy Collaboration, et al. 2013, A&A, 558, A33Google Scholar
Beckmann, V., & Shrader, C. R. 2012, Active Galactic Nuclei (Wiley-VCH)Google Scholar
Bessell, M. S., Castelli, F., & Plez, B. 1998, A&A, 333, 231Google Scholar
Bhatta, G. 2021, ApJ, 923, 7Google Scholar
Bhatta, G., et al. 2016, ApJ, 832, 47Google Scholar
Bradley, L., et al. 2020, astropy/photutils: 1.0.1, Zenodo, doi: 10.5281/zenodo.4049061Google Scholar
Camenzind, M., & Krockenberger, M. 1992, A&A, 255, 59Google Scholar
Chakrabarti, S. K., & Wiita, P. J. 1993, ApJ, 411, 602Google Scholar
Chang, X., et al. 2023, MNRAS, 520, 4118Google Scholar
Craig, M., et al. 2017, Astropy/Ccdproc: V1.3.0.Post1, Zenodo, doi: 10.5281/zenodo.1069648Google Scholar
de Diego, J. A. 2014, AJ, 148, 93Google Scholar
de Diego, J. A., et al. 2015, AJ, 150, 44Google Scholar
Edelson, R. A., & Krolik, J. H. 1988, ApJ, 333, 646Google Scholar
Fan, J., et al. 2023, ApJS, 268, 23Google Scholar
Fiorucci, M., Ciprini, S., & Tosti, G. 2004, A&A, 419, 25Google Scholar
Fiorucci, M., Tosti, G., & Rizzi, N. 1998, PASP, 110, 105Google Scholar
Forman, W., et al. 1978, ApJS, 38, 357Google Scholar
Fossati, G., Maraschi, L., Celotti, A., Comastri, A., & Ghisellini, G. 1998, MNRAS, 299, 433Google Scholar
Foster, G. 1996, AJ, 112, 1709Google Scholar
Gaur, H., et al. 2012, MNRAS, 425, 3002Google Scholar
Gaur, H., et al. 2015, MNRAS, 452, 4263Google Scholar
Ghisellini, G., et al. 1997, A&A, 327, 61Google Scholar
Gopal-Krishna, et al. 2011, MNRAS, 416, 101Google Scholar
Graham, M. J., et al. 2015, MNRAS, 453, 1562Google Scholar
Gu, M. F., & Ai, Y. L. 2011, A&A, 528, A95Google Scholar
Gupta, A. C., Fan, J. H., Bai, J. M., & Wagner, S. J. 2008, AJ, 135, 1384Google Scholar
Gupta, A. C., Srivastava, A. K., & Wiita, P. J. 2009, ApJ, 690, 216Google Scholar
Gupta, A. C., et al. 2019, MNRAS, 484, 5785Google Scholar
Gupta, A. C., et al. 2016, MNRAS, 458, 1127Google Scholar
Harris, C. R., et al. 2020, Natur, 585, 357Google Scholar
Heidt, J., & Wagner, S. J. 1996, A&A, 305, 42Google Scholar
Heidt, J., & Wagner, S. J. 1998, A&A, 329, 853Google Scholar
Huang, C.-Y., Wang, D.-X., Wang, J.-Z., & Wang, Z.-Y. 2013, RAA, 13, 705Google Scholar
Hunter, J. D. 2007, CSE, 9, 90Google Scholar
Isler, J. C., et al. 2017, ApJ, 844, 107Google Scholar
Jorstad, S. G., et al. 2001, ApJS, 134, 181Google Scholar
Kiehlmann, S. 2023, lcsim: Light curve simulation code, Astrophysics Source Code Library, record ascl:2310.002Google Scholar
Kiehlmann, S., Max-Moerbeck, W., & King, O. 2023, wwz: Weighted wavelet z-transform code, Astrophysics Source Code Library, record ascl:2310.003Google Scholar
Kishore, S., Gupta, A. C., & Wiita, P. J. 2023, ApJ, 943, 53Google Scholar
Lomb, N. R. 1976, Ap& SS, 39, 447Google Scholar
Lupton, R. H., et al. 2005, in American Astronomical Society Meeting Abstracts, Vol. 207, American Astronomical Society Meeting Abstracts, 133.08Google Scholar
Mangalam, A. V., & Wiita, P. J. 1993, ApJ, 406, 420Google Scholar
Marcha, M. J. M., Browne, I. W. A., Impey, C. D., & Smith, P. S. 1996, MNRAS, 281, 425Google Scholar
Marscher, A. P., & Gear, W. K. 1985, ApJ, 298, 114Google Scholar
Marscher, A. P., & Travis, J. P. 1996, A&AS, 120, 537Google Scholar
Marscher, A. P., et al. 2008, Nature, 452, 966Google Scholar
Massaro, E., et al. 2003, A&A, 399, 33Google Scholar
McKinney, J. C., Tchekhovskoy, A., & Blandford, R. D. 2012, MNRAS, 423, 3083Google Scholar
Meng, N., Zhang, X., Wu, J., Ma, J., & Zhou, X. 2018, ApJS, 237, 30Google Scholar
Mohan, P., & Mangalam, A. 2015, ApJ, 805, 91Google Scholar
Montgomery, D. 2012, Design and Analysis of Experiments (8th edn.; John Wiley & Sons, Incorporated)Google Scholar
Negi, V., et al. 2022, MNRAS, 510, 1791Google Scholar
O’Neill, S., et al. 2022, ApJ, 926, L35Google Scholar
Pandey, A., Gupta, A. C., Wiita, P. J., & Tiwari, S. N. 2019, ApJ, 871, 192Google Scholar
Raiteri, C. M., et al. 2001, A&A, 377, 396Google Scholar
Raiteri, C. M., et al. 2003, A&A, 402, 151Google Scholar
Raiteri, C. M., et al. 2017, Natur, 552, 374Google Scholar
Rani, B., et al. 2010, MNRAS, 404, 1992Google Scholar
Rieger, F. M. 2004, ApJ, 615, L5Google Scholar
Romero, G. E. 1995, Ap& SS, 234, 49Google Scholar
Romero, G. E., Cellone, S. A., & Combi, J. A. 1999, A&AS, 135, 477Google Scholar
Romero, G. E., Cellone, S. A., Combi, J. A., & Andruchow, I. 2002, A&A, 390, 431Google Scholar
Roy, A., et al. 2022a, MNRAS, 510, 3641Google Scholar
Roy, A., et al. 2022b, MNRAS, 513, 5238Google Scholar
Sandrinelli, A., Covino, S., Dotti, M., & Treves, A. 2016, AJ, 151, 54Google Scholar
Sandrinelli, A., et al. 2017, A&A, 600, A132Google Scholar
Scargle, J. D. 1982, ApJ, 263, 835Google Scholar
Schneider, P., & Weiss, A. 1987, A&A, 171, 49Google Scholar
Sikora, M., Stawarz, Ł., Moderski, R., Nalewajko, K., & Madejski, G. M. 2009, ApJ, 704, 38Google Scholar
Sillanpaa, A., Haarala, S., Valtonen, M. J., Sundelius, B., & Byrd, G. G. 1988, ApJ, 325, 628Google Scholar
Sobacchi, E., Sormani, M. C., & Stamerra, A. 2017, MNRAS, 465, 161Google Scholar
Stocke, J. T., et al. 1990, ApJ, 348, 141Google Scholar
Tripathi, A., Smith, K. L., Wiita, P. J., & Wagoner, R. V. 2024, MNRAS, 527, 9132Google Scholar
Urry, C. M., & Padovani, P. 1995, PASP, 107, 803Google Scholar
Valtonen, M. J., et al. 2008, Nature, 452, 851Google Scholar
Villata, M., & Raiteri, C. M. 1999, A&A, 347, 30Google Scholar
Villata, M., et al. 2002, A&A, 390, 407Google Scholar
Villata, M., et al. 2006, A&A, 453, 817Google Scholar
Villata, M., et al. 2009, A&A, 501, 455Google Scholar
Wagner, S. J., & Witzel, A. 1995, ARA&A, 33, 163Google Scholar
Wang, J.-Y., An, T., Baan, W. A., & Lu, X.-L. 2014, MNRAS, 443, 58Google Scholar
Weaver, Z. R., et al. 2020, ApJ, 900, 137Google Scholar
Woo, J.-H., & Urry, C. M. 2002, ApJ, 579, 530Google Scholar
Wu, Z., Jiang, D. R., Gu, M., & Liu, Y. 2007, A&A, 466, 63Google Scholar
Xie, G. Z., et al. 2004, MNRAS, 348, 831Google Scholar
Zhang, P.-f., Yan, D.-h., Liao, N.-h., & Wang, J.-c. 2017, ApJ, 835, 260Google Scholar
Zhang, X. 2022, MNRAS, 516, 3650Google Scholar
Zhou, J., et al. 2018, NatCo, 9, 4599Google Scholar
Supplementary material: File

Özdönmez and Tekkeşinoğlu supplementary material

Özdönmez and Tekkeşinoğlu supplementary material
Download Özdönmez and Tekkeşinoğlu supplementary material(File)
File 324.9 KB