Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-14T11:41:52.278Z Has data issue: false hasContentIssue false

Evolutionary Calculations for Planetary Nebula Nuclei with Continuing Mass Loss and Realistic Starting Conditions

Published online by Cambridge University Press:  25 April 2016

D. J. Faulkner
Affiliation:
Mount Stromlo and Siding Spring Observatories, Australian National University
P. R. Wood
Affiliation:
Mount Stromlo and Siding Spring Observatories, Australian National University

Extract

The mechanism by which planetary nebula (PN) shells are ejected is still subject to considerable uncertainty. It is generally assumed that the precursors of these objects are low mass (M< 5 M) asymptotic giant branch (AGB) stars, and that the nucleus of a planetary nebula (NPN) is undergoing a final gravitational contraction to the white dwarf state. The shell consists of some or all of the remaining unburnt (though not necessarily uncontaminated), hydrogen-rich material out of which the star was originally formed.

Type
Contributions
Copyright
Copyright © Astronomical Society of Australia 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baud, B., & Habing, H. J., IAU Symp. No. 103, Planetary Nebulae, Ed. Flower, D. R., D. Reidel, Dordrecht, Holland, p. 530 (1983).CrossRefGoogle Scholar
Deutsch, A. J., Stars and Stellar Systems, Vol. VI, Stellar Atmospheres, Ed. Greenstein, J. L., University of Chicago Press, p. 543 (1960).Google Scholar
Faulkner, D. J., Astrophys. J., 162, 513 (1970).CrossRefGoogle Scholar
Finzi, A., & Wolf, R. A., Astrophys. Letters, 5, 63 (1970).Google Scholar
Harman, R. J., & Seaton, M. J., Mon. Not. R. Astron. Soc., 132, 15 (1966).Google Scholar
Iben, I. Jr., Astrophys. J., III, 333 (1984).CrossRefGoogle Scholar
Jones, T. J., Hyland, A. R., Wood, P. R., and Gatley, I., Astrophys. J., 273, 669 (1983).CrossRefGoogle Scholar
Kaler, J. B., Astron. J., 79, 594 (1974).CrossRefGoogle Scholar
Kaler, J. B., Astrophys. J., 271, 188 (1983).CrossRefGoogle Scholar
Kahn, F. D., IAU Symp. No. 103, Planetary Nebulae, Ed. Flower, D. R., D. Reidel, Dordrecht, Holland, p. 305 (1983).CrossRefGoogle Scholar
Knapp, G. R., Philips, T. G., Leighton, R. B., Lo, K. Y., Wannier, P. G., & Wootten, H. A., Astrophys. J., 252, 616 (1982).CrossRefGoogle Scholar
Kwok, S., IAU Symp. No. 103, Planetary Nebulae, Ed. Flower, D. R., D. Reidel, Dordrecht, Holland, p. 293 (1983).CrossRefGoogle Scholar
Millikan, A. G., Astron. J., 79, 1259 (1974).CrossRefGoogle Scholar
Perinotto, M., IAU Symp. No. 103, Planetary Nebulae, Ed. Flower, D. R., D. Reidel, Dordrecht, Holland, p. 323 (1983).CrossRefGoogle Scholar
Pottasch, S. R., IAU Symp. No. 103, Planetary Nebulae, Ed. Flower, D. R., D. Reidel, Dordrecht, Holland, p. 391 (1983).CrossRefGoogle Scholar
Schönberner, D., Astron. Astrophys., 103, 119 (1981).Google Scholar
Schönberner, D., Astrophys. J., III, 708 (1983).CrossRefGoogle Scholar
Schwarzschild, M., & Härm, R., Astrophys J., 142, 855 (1965).CrossRefGoogle Scholar
Seaton, M. J., Mon. Not. R. Astron. Soc., 132, 113 (1966).CrossRefGoogle Scholar
Tuchman, Y., Sack, N., & Barkat, Z., Astrophys. J., 234, 217 (1979).CrossRefGoogle Scholar
Werner, M. W., Beckwith, S., Gatley, I., Sellgren, K., Berriman, G., & Whiting, D. L., Astrophys. J., 239, 540 (1980).CrossRefGoogle Scholar
Wingert, D. E., & Fontaine, G., Pulsations in Classical and Cataclysmic Variable Stars, Cox, J. P., & Hansen, C. J., (Eds), Joint Inst, for Laboratory Astrophys., p. 46. (1982).Google Scholar
Wood, P. R., Astrophys J., 190, 609 (1974).CrossRefGoogle Scholar
Wood, P. R., & Zarro, D. M., Astrophys. J., 247, 247 (1981).CrossRefGoogle Scholar