Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-24T13:37:10.031Z Has data issue: false hasContentIssue false

Estimation and validation of mercury intake associated with fish consumption in an EPIC cohort of Spain

Published online by Cambridge University Press:  02 January 2007

JM Sanzo
Affiliation:
Health Department of the Basque Country, Public Health Division of Gipuzkoa, Avda. Navarra No. 4, 20013 San Sebastian, Spain
M Dorronsoro*
Affiliation:
Health Department of the Basque Country, Public Health Division of Gipuzkoa, Avda. Navarra No. 4, 20013 San Sebastian, Spain
P Amiano
Affiliation:
Health Department of the Basque Country, Public Health Division of Gipuzkoa, Avda. Navarra No. 4, 20013 San Sebastian, Spain
A Amurrio
Affiliation:
Health Department of the Basque Country, Public Health Laboratory, C Santiago II, Vitoria, Spain
FX Aguinagalde
Affiliation:
Health Department of the Basque Country, Public Health Laboratory, C Santiago II, Vitoria, Spain
MA Azpiri
Affiliation:
Health Department of the Basque Country, Public Health Division of Gipuzkoa, Avda. Navarra No. 4, 20013 San Sebastian, Spain
*
*Corresponding author: Email [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Objective:

To estimate mercury intake due to fish consumption among the individuals from Gipuzkoa participating in the European Prospective Investigation into Cancer (EPIC), and to validate the estimation of mercury exposure through diet, by measuring blood mercury level.

Design and setting:

The population for the EPIC Gipuzkoa cohort was recruited from 1992 to 1995. Each individual's diet was assessed regarding habitual intake over the previous year, using the diet history method. Blood samples were taken at the time of the interview. The mercury content of the fish species consumed was supplied by the Food Chemical Surveillance Programme in the Basque Country.

Subjects:

For the estimation, 8417 volunteers, men and women, aged 35–65 years, of the EPIC cohort; for the validation, a random sample of 120 individuals stratified by fish intake was taken.

Results:

The validation study confirmed the relationship between fish consumption and mercury intake, as well as between fish consumption and mercury in erythrocytes. 99.9% of individuals have intakes below 75% of the Provisional Tolerable Weekly Intake (PTWI) of mercury established by the World Health Organization. But the limit dosage recommended by the United States Environmental Protection Agency, measured by the average risk index, would be exceeded often.

Conclusions:

No individual from the cohort would exceed the PTWI of mercury. Nevertheless, owing to the amount of fish consumed, certain individuals would have mercury intakes approaching the recommended limits. With a view to the future, we believe mercury in fish must continue to be monitored closely in order to assess the risks for the population.

Type
Research Article
Copyright
Copyright © CABI Publishing 2001

References

1Agency for Toxic Substances and Disease Registry. Mercury toxicity. Am. Fam. Physician 1992; 46: 1731–41.Google Scholar
2Berlin, M. Dose–response relations and diagnostic indices of mercury concentrations in critical organs upon exposure to mercury and mercurials. In Nordberg, GF, ed. Effects and Dose–Response Relationship of Toxic Metals. Amsterdam: Elsevier Scientific Publishing Company, 235–45.Google Scholar
3Clarkson, TW. Mercury: major issues in environmental health. Environ. Health Perspect. 1992; 100: 31–8.CrossRefGoogle Scholar
4International Programme on Chemical Safety (ICPS). Methylmercury. Environmental Health Criteria 101. Geneva: World Health Organization, 1990.Google Scholar
5Langlois, C, Langis, R. Presence of airborne contaminants in the wildlife of northern Quebec. Sci. Total Environ. 1995; 160–161: 391402.CrossRefGoogle ScholarPubMed
6Staveland, G, Marthinsen, Y, Norheim, G, Julshamn, K. Levels of environmental pollutants in flounder (Platichthys flesus L.) and cod (Gadus morhua L.) caught in the waterway of Glomma, Norway. II. Mercury and arsenic. Arch. Environ. Contam. Toxicol. 1993; 24: 187–93.Google Scholar
7Fitzgerald, WF, Clarkson, TW. Mercury and monomethylmercury: present and future concerns. Environ. Health Perspect. 1991; 96: 159–66.Google Scholar
8Svensson, BG, Schutz, A, Nilsson, A, Akesson, Y, Skerfving, S. Fish as a source of exposure to mercury and selenium. Sci. Total Environ. 1992; 126: 6174.Google Scholar
9Buzina, R, Stegnar, P, Buzina-Suboticanec, K, Horvat, M, Petric, Y, Farley, TM. Dietary mercury intake and human exposure in an Adriatic population. Sci. Total Environ. 1995; 170: 199208.Google Scholar
10Svensson, BG, Nilsson, A, Jonsson, E, et al. Fish consumption and exposure to persistent organochlorine compounds, mercury, selenium and methylamines among Swedish fishermen. Scand. J. Work Environ. Health. 1995; 21: 96105.CrossRefGoogle ScholarPubMed
11Langworth, S, Elinder, CG, Gothe, CJ, Vesterberg, O. Biological monitoring of environmental and occupational exposure to mercury. Int. Arch. Occup. Environ. Health. 1991; 63: 161–7.Google Scholar
12Schweinsberg, F. Risk estimation of mercury intake from different sources. Toxicol. Lett. 1994; 72: 345–51.Google Scholar
13Mackert, JR. Factors affecting estimation of dental amalgam mercury exposure from measurements of mercury vapour levels intra-oral and expired air. J. Dent. Res. 1987; 66: 1775–80.CrossRefGoogle ScholarPubMed
14Berglund, A. Estimation by a 24-hour study of the daily dose of intra-oral mercury vapor inhaled after release from dental amalgam. J. Dent. Res. 1990; 69: 1646–51.CrossRefGoogle ScholarPubMed
15Clarkson, TW, Hursh, JB, Sager, PR, Syversen, TLM. Mercury. In: Clarkson, TW, Friberg, L, Nordberg, GF, Sager, PR. Biological Monitoring of Toxic Metals. New York: Plenum Press,1988; 196246.Google Scholar
16International Programme on Chemical Safety (ICPS). Inorganic Mercury. Environmental Health Criteria 118. Geneva: World Health Organization, 1991.Google Scholar
17Lauwerys, R. Toxicología Industrial e Intoxicaciones Profesionales. Barcelona: Masson SA, 1994; 153.Google Scholar
18Gunderson, EL. FDA Total Diet Study, July 1986–April 1991, dietary intakes of pesticides, selected elements, and other chemicals. J. AOAC Int. 1995; 78: 910–21.CrossRefGoogle ScholarPubMed
19Departamento de Sanidad. Encuesta de Nutriciòn de la Comunidad Autonoma del País Vasco. Vitoria-Gasteiz: Servicio Central de Publicaciones del Gobierno Vasco, 1994.Google Scholar
20Grupo EPIC de España. Estudio prospectivo Europeo sobre dieta, cáncer y salud. Med. Clin. (Barc.). 1994; 102: 781–5.Google Scholar
21Burke, BS. The dietary history as a tool in research. J. Am. Diet. Assoc. 1947; 23: 104–11.CrossRefGoogle Scholar
22Group EPIC of Spain. Validity and reproducibility of a diet history questionnaire in Spain. I. Foods. Int. J. Epidemiol. 1997; 26: S91–9.CrossRefGoogle Scholar
23Group EPIC of Spain. Validity and reproducibility of a diet history questionnaire in Spain. II. Nutrients. Int. J. Epidemiol. 1997; 26: S100–9.CrossRefGoogle Scholar
24Group EPIC of Spain. Validity and reproducibility of a diet history questionnaire in Spain. III. Biochemical markers. Int. J. Epidemiol. 1997; 26: S110–7.CrossRefGoogle Scholar
25Urieta, I, Jalón, M, García, J, Gonzalez de Galdeano, L. Food surveillance in the Basque Country (Spain). I. The design of a total diet study. Food Addit. Contam. 1991; 3: 371–80.Google Scholar
26Departamento de Sanidad, Gobierno Vasco. Vigilancia de la Contaminación Química de los Alimentos en la Comunidad Autónoma del País Vasco 1990–1995. Vitoria-Gasteiz: Servicio Central de Publicaciones del Gobierno Vasco, 1997; 1924.Google Scholar
27Rodriguez Artalejo, F, Banegas, JR, Graciani, MA, Hernandez Vecino, R, Rey Calero, J. El consumo de alimentos y nutrientes en España en el periodo 1940–1988. Análisis de su consistencia con la dieta mediterranea. Med. Clin. (Barc.) 1996; 106: 161–8.Google Scholar
28Rodriguez Artalejo, F, Graciani, MA, Banegas, JR, Martín Moreno, JM. El consumo de alimentos y nutrientes en España en el periodo 1940–1988 (y II). Un estudio comparativo de las principales fuentes de información sobre consumo alimentario. Med. Clin. (Barc.). 1996; 107: 446–52.Google Scholar
29Moreiras-Varela, O. The mediterranean diet in Spain. Eur. J. Clin. Nutr. 1989; 43(Suppl. 2): 83–7.Google ScholarPubMed
30Peattie, ME, Buss, DH, Lindsay, DG, Smart, GA. Reorganization of the British total diet study for monitoring food constituents from 1981. Food Chem. Toxicol. 1983; 21: 503–7.CrossRefGoogle ScholarPubMed
31Pennington, JA. Revision of the Total Diet Study food list and diets. J. Am. Diet. Assoc. 1983; 82: 166–73.Google Scholar
32Gussow, JD. Mediterranean diets: are they environmentally responsible?. Am. J. Clin. Nutr. 1995; 61(Suppl): 1383S–9S.CrossRefGoogle ScholarPubMed
33Stern, AH, Korn, LR, Ruppel, BE. Estimation of fish consumption and methylmercury intake in the New Jersey population. J. Expos. Anal. Environ. Epidemiol. 1996; 6: 503–25.Google ScholarPubMed
34Wiener, JG. Bioaccumulation of mercury in fish. Proceedings of the Nation's Forum on Mercury in Fish, New Orleans, LA, 27–29 September 1995. EPA 823 r-95-002. Washington, DC: US Environmental Protection Agency, Office of Water, 1995; 41–7.Google Scholar
35Ministerio de Sanidad y Consumo. Orden de 2 de Agosto de 1991 del Ministerio de Sanidad y Consumo Por la que se aprueban las normas microbiológicas, los límites de contenido en metales pesados para los productos de la pesca y de la acuiculturra. BOE No. 195. Madrid: Ministerio de Sanidad, 1991.Google Scholar
36Schuhmacher, M, Batiste, J, Bosque, MA, Domingo, JL, Corbella, J. Mercury concentrations in marine species from the coastal area of Tarragona Province, Spain. Dietary intake of mercury through fish and seafood consumption. Sci. Total Environ. 1994; 156: 269–73.Google Scholar
37Fldspang, A, Hansen, JC. Dietary intake of methylmercury as a correlate of gestational length and birth weight among newborns in Greenland. Am. J. Epidemiol. 1990; 132: 310–7.CrossRefGoogle Scholar
38Grandjean, P, Weihe, P, Jørgensen, PJ, Clarkson, T, Cernichiari, E, Viderø, T. Impact of maternal seafood diet on fetal exposure to mercury, selenium, and lead. Arch. Environ. Health. 1992; 47: 185–95.Google Scholar
39Barregard, L, Horvat, M, Schütz, A. No indication of in vivo methylation of inorganic mercury in chloralkali workers. Environ. Res. 1994; 67: 160–7.CrossRefGoogle ScholarPubMed
40Aitio, A, Valkonen, S, Kivistö, H, Yrjänheikki, E. Effect of occupational mercury exposure on plasma lysosomal hydrolases. Int. Arch. Occup. Environ. Health. 1983; 53: 139–47.CrossRefGoogle ScholarPubMed
41Chang, SB, Siew, C, Gruninger, SE. Examination of blood levels of mercurials in practicing dentists using cold-vapor atomic absorption spectrometry. J. Anal. Toxicol. 1987; 11: 149–53.CrossRefGoogle ScholarPubMed
42Brune, D, Nordberg, GF, Vesterberg, O, Gerhardssson, L, Wester, PO. A review of normal concentrations of mercury in human blood. Sci. Total Environ. 1991; 100: 235–82.CrossRefGoogle ScholarPubMed
43Oskarsson, A, Json Lagerkvist, B, Ohling, B, et al. Mercury levels in the hair of pregnant women in a polluted area in Sweden. Sci. Total Environ. 1994; 151: 2935.Google Scholar
44World Health Organization. Evaluation of Certain Food Additives and the Contaminants Mercury, Lead, and Cadmium. Sixteenth Report of the Joint FAO/WHO Expert Committee on Food Additives. WHO Technical Report Series, No. 505. Geneva: World Health Organization, 1972.Google Scholar
45World Health Organization. Evaluation of Certain Food Additives and Contaminants. Thirty-third Report of the Joint FAO/WHO Expert Committee on Food Additives. WHO Technical Report Series, No. 776. Geneva: World Health Organization, 1989.Google Scholar
46US Environmental Protection Agency. Oral Reference Dose for Methylmercury. IRIS (Integrated Risk Information System) [Online]. Available at http://toxnet.nlm.nih.gov/cgibin/sis/search/f?./temp~BAAKEai60:1. 5 01 1995.Google Scholar
47US Environmental Protection Agency. Glossary of Risk Assessment Related Terms. IRIS (Integrated Risk Information System) [Online]. Available at http://www.epa.gov/iris/gloss8.htm. 3 May 2001.Google Scholar
48Davidson, PW, Myers, GJ, Cox, C, et al. Effects of prenatal and postnatal methylmercury exposure from fish consumption on neurodevelopment: outcomes at 66 month of age in the Seychelles Child Development Study. JAMA. 1998; 280: 701–7.CrossRefGoogle ScholarPubMed
49Uauy-Dagach, R, Mena, P. Nutritional role of omega-3 fatty acids during the perinatal period. Clin. Perinatol. 1995; 22: 157–75.CrossRefGoogle ScholarPubMed
50Daviglus, ML, Stamler, J, Orencia, AJ, et al. Fish consumption and the 30-year risk of fatal myocardial infarction. N. Engl. J. Med. 1997; 336: 1046–53.CrossRefGoogle ScholarPubMed
51Egeland, GM, Middaugh, JP. Policy Forum: Balancing fish consumption benefits with mercury exposure. Science. 1997; 278: 1904–5.CrossRefGoogle Scholar
52Clarkson, T, Cox, C, Davidson, PW, Myers, GJ. Mercury in fish. Science. 1998; 279: 459–60.CrossRefGoogle ScholarPubMed