Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-07T19:27:09.527Z Has data issue: false hasContentIssue false

Trivariate Theory of Mind Data Analysis with a Conditional Joint Modeling Approach

Published online by Cambridge University Press:  01 January 2025

Minjeong Jeon*
Affiliation:
University of California, Los Angeles
Paul De Boeck
Affiliation:
Ohio State University
Xiangrui Li
Affiliation:
Ohio State University
Zhong-Lin Lu
Affiliation:
New York University
*
Correspondence should bemade toMinjeong Jeon, Department of Education, University of California, Los Angeles, 3141 Moore Hall, 457 Portola Avenue, Los Angeles, CA90024, USA. Email: [email protected]

Abstract

Theory of mind (ToM) is an essential social-cognitive ability to understand one’s own and other people’s mental states. Neural data as well as behavior data have been utilized in ToM research, but the two types of data have rarely been analyzed together, creating a large gap in the literature. In this paper, we propose and apply a novel joint modeling approach to analyze brain activations with two types of behavioral data, response times and response accuracy, obtained from a multi-item ToM assessment, with the intention to shed new light on the nature of the underlying process of ToM reasoning. Our trivariate data analysis suggested that different levels or kinds of processes might be involved during the ToM assessment, which seem to differ in terms of cognitive efficiency and sensitivity to ToM items and the correctness of item responses. Additional details on the trivariate data analysis results are provided with discussions on their implications for ToM research.

Type
Application Reviews and Case Studies
Copyright
Copyright © 2020 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmed, F., & Miller, L. (2011). Executive function mechanisms of theory of mind. Journal of Autism and Developmental Disorders, 41, 667678. CrossRefGoogle ScholarPubMed
Aichhorn, M., Perner, J., Weiss, B., Kronbichler, M., Staffen, W., & Ladurner, G. (2009). Temporo-parietal junction activity in theory-of-mind tasks: Falseness, beliefs, or attention. Journal of Cognitive Neuroscience, 21, 11791192. CrossRefGoogle ScholarPubMed
Amodio, D., & Frith, C. (2006). Meeting of minds: The medial frontal cortex and social cognition. Nature Reviews in Neuroscience, 7, 268277. CrossRefGoogle ScholarPubMed
Bandalos, D. L. (2014). Relative performance of categorical diagonally weighted least squares and robust maximum likelihood estimation. Structural Equation Modeling: A Multidisciplinary Journal, 21, 102116. CrossRefGoogle Scholar
Baron-Cohen, S., Leslie, A. M., & Frith, U. (1985). Does the autistic child have a "theory of mind"?. Cognition, 21, 3746. 2934210 CrossRefGoogle ScholarPubMed
Binder, J., Medler, D., Desai, R., Conant, L., & Liebenthal, E. (2005). Some neurophysiological constraints on models of word naming. NeuroImage, 27, 677693. CrossRefGoogle ScholarPubMed
Bock, R. D., & Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm. Psychometrika, 46, 443459. CrossRefGoogle Scholar
Bolsinova, M., De Boeck, P., & Tijmstra, J. (2017). Modelling conditional dependence between response time and accuracy. Psychometrika, CrossRefGoogle ScholarPubMed
Bowler, D. M. (1992). Theory of mind in Asperger’s syndrome. Journal of Child Psychology and Psychiatry, 33, 877893. CrossRefGoogle ScholarPubMed
Boynton, G., Engel, S., Glover, G., & Heeger, D. (1996). Linear systems analysis of functional magnetic resonance imaging in human V1. The Journal of Neuroscience, 16, 42074221. CrossRefGoogle ScholarPubMed
Bradford, E., Jentzsch, I., & Gomez, J. (2015). From self to social cognition: Theory of mind mechanisms and their relation to executive functioning. Cognition, 138, 2134. CrossRefGoogle ScholarPubMed
Callejas, A., Shulman, G., Corbetta, M. (2011). False belief vs. false photographs: A test of theory of mind or working memory?. Frontiers in Psychology, 2, 316CrossRefGoogle ScholarPubMed
Christoff, K., Prabhakaran, V., Dorfman, J., Zhao, Z., Kroger, J., Holyoak, K., & Gabrieli, J. (2014). Rostrolateral prefrontal cortex involvement in relational integration during reasoning. NeuroImage, 14, 11361149. CrossRefGoogle Scholar
Crittenden, B., & Duncan, J. (2014). Task difficulty manipulation reveals multiple demand activity but no frontal lobe hierarchy. Cerebral Cortex, 24, 532540. CrossRefGoogle ScholarPubMed
Davis, W. (1993). The FC1 rule of identification for confirmatory factor analysis. Sociological Methods and Research, 21, 403407. CrossRefGoogle Scholar
De Boeck, P., Chen, H., & Davison, M. (2017). Spontaneous and imposed speed of cognitive test responses. British Journal of Mathematical and Statistical Psychology, 70, 225237. CrossRefGoogle ScholarPubMed
De Boeck, P., & Jeon, M. (2019). An overview of models for response times and processes in cognitive tests. Frontiers in Psychology, 10, 102CrossRefGoogle ScholarPubMed
Dodell-Feder, D., Koster-Hale, J., Bedny, M., & Saxe, R. (2011). fMRI item analysis in a theory of mind task. Neuroimage, 55, 705712. CrossRefGoogle Scholar
Dohnel, K., Schuwerk, T., Meinhardt, J., Sodian, B., Hajak, G., & Sommer, M. (2012). Functional activity of the right temporo-parietal junction and of the medial prefrontal cortex associated with true and false belief reasoning. NeuroImage, 60, 16521661. CrossRefGoogle ScholarPubMed
Enders, C., & Tofighi, D. (2008). The impact of misspecifying class-specific residual variances in growth mixture models. Structural Equation Modeling: A Multidisciplinary Journal, 15, 7595. CrossRefGoogle Scholar
Gallagher, H. L., & Frith, C. D. (2003). Functional imaging of theory of mind. Trends in Cognitive Sciences, 7, 7783. 12584026 CrossRefGoogle ScholarPubMed
Gaut, G., Turner, B., Lu, Z. L., Cunningham, W.,& Steyvers, M. (2018). Predicting task and subject differences with functional connectivity and blood-oxygen-level-dependent variability. Brain Connectivity, 9, 451463. CrossRefGoogle Scholar
Geng, J., & Mangun, G. (2011). Mangun right temporoparietal junction activation by a salient contextual cue facilitates target discrimination. NeuroImage, 54, 594601. CrossRefGoogle ScholarPubMed
Geng, J., & Vossel, S. (2013). Re-evaluating the role of TPJ in attentional control: Contextual updating?. Neuroscience and Biobehavioral Reviews, 37, 26082620. CrossRefGoogle ScholarPubMed
Goldhammer, F., Naumann, J., & Greiff, S. (2015). More is not always better: The relation between item response and item response time in raven’s matrices. Journal of Intelligence, 3, 2140. CrossRefGoogle Scholar
Goldhammer, F., Naumann, J., Stelter, A., Toth, K., Rolke, H., & Klieme, E. (2014). The time on task effect in reading and problem solving is moderated by task difficulty and skill: Insights from a computer-based large-scale assessment. Journal of Educational Psychology, 106, 608626. CrossRefGoogle Scholar
Graves, W., Desai, R., Humphries, C., Seidenberg, M., & Binder, J. (2010). Neural systems for reading aloud: A multiparametric approach. Cerebral Cortex, 20, 17991815. CrossRefGoogle Scholar
Grinband, J., Wager, T., Lindquist, M., Ferrera, V., & Hirsch, J. (2008). Detection of time-varying signals in event-related fMRI designs. NeuroImage, 43, 509520. CrossRefGoogle ScholarPubMed
Gweon, H., Dodell-Feder, D., Bedny, M., & Saxe, R. (2012). Theory of mind performance in children correlates with functional specialization of a brain region for thinking about thoughts. Child Development, 83, 18531868. CrossRefGoogle ScholarPubMed
Hamilton, A. F. (2009). Goals, intentions and mental states: Challenges for theories of autism. Journal of Child Psychology and Psychiatry, 50, 881892. CrossRefGoogle ScholarPubMed
Horner, A., & Andrews, T. (2009). Linearity of the fMRI response in category-selective regions of human visual cortex. Human Brain Mapping, 30, 26282640. CrossRefGoogle ScholarPubMed
Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6, 155. CrossRefGoogle Scholar
Jeon, M., De Boeck, P., & van der Linden, W. (2017). Modeling answer change behavior: An application of a generalized item response tree model. Journal of Educational and Behavioral Statistics, 42, 467490. CrossRefGoogle Scholar
Jeon, M., Rijmen, F., & Rabe-Hesketh, S. (2018). CFA models with a general factor and multiple sets of secondary factors. Psychometrika, 83, 785808. CrossRefGoogle ScholarPubMed
Kenny, D. A. (1976). An empirical application of confirmatory factor analysis to the multitrait-multimethod matrix. Journal of Experimental Social Psychology, 12, 247252. CrossRefGoogle Scholar
Kerr, N., Dunbar, R., & Bentall, R. (2003). Theory of mind deficits in bipolar affective disorder. Journal of Affect Disorders, 73, 253259. CrossRefGoogle ScholarPubMed
Kriegeskorte, N., Simmons, W., Bellgowan, P., & Baker, C. (2009). Circular analysis in systems neuroscience- the dangers of double dipping. Nature Neuroscience, 12, 535540. CrossRefGoogle ScholarPubMed
Kubit, B., & Jack, A. (2014). Rethinking the role of the rTPJ in attention and social cognition in light of the opposing domains hypothesis: Findings from an ALE-based meta-analysis and resting-state functional connectivity. Frontiers in Human Neuroscience, 7, 323Google Scholar
Lindquist, M. A., Loh, J., Atlas, L., & Wager, T. (2009). Modeling the hemodynamic response function in fMRI: Efficiency, bias and mis-modeling. NeuroImage, 45, 187198. CrossRefGoogle ScholarPubMed
Liu, D., Meltzoff, A., & Wellman, H. (2009). Neural correlates of belief- and desire-reasoning. Child Development, 80, 11631171. CrossRefGoogle ScholarPubMed
Mahy, C., Moses, L., & Pfeifer, J. (2014). How and where: Theory-of-mind in the brain. Developmental Cognitive Neuroscience, 9, 6881. CrossRefGoogle ScholarPubMed
McDonald, R. P. (1982). A note on the investigation of local and global identifiability. Psychometrika, 47, 101103. CrossRefGoogle Scholar
McGonigle, D., Howseman, A., Athwal, B., Friston, K., Frackowiak, R., & Holmes, A. (2011). Variability in fMRI: An examination of intersession differences. Neuroimage, 11, 708734. CrossRefGoogle Scholar
Meinhardt, J., Sodian, B., Thoermer, C., Doehnel, K.,& Sommer, M. (2011). True- and false-belief reasoning in children and adults: An event-related potential study of theory of mind. Developmental Cognitive Neuroscience, 1, 6776. CrossRefGoogle ScholarPubMed
Mitchell, J. (2008). Activity in right temporo-parietal junction is not selective for theory-of-mind. Cerebral Cortex, 18, 262271. CrossRefGoogle Scholar
Mitchell, J., Banaji, M., & Macrae, C. (2005). The link between social cognition and self-referential thought in the medial prefrontal cortex. Journal of Cognitive Neuroscience, 17, 13061315. CrossRefGoogle ScholarPubMed
Muthén, L., & Muthén, B. (2008). Mplus user’s guide. Angeles: Muthen & Muthen. Google Scholar
Nevitt, J., & Hancock, G. R. (2001). Performance of bootstrapping approaches to model test statistics and parameter standard error estimation in structural equation modeling. Structural Equation Modeling, 8, 353377. CrossRefGoogle Scholar
Ochsner, K., Knierim, K., & Ludlow, D. (2004). Reflecting upon feelings: An fMRI study of neural systems supporting the attribution of emotion to self and other. Journal of Cognitive Neuroscience, 16, 17461772. CrossRefGoogle ScholarPubMed
Perner, J., & Leekam, S. (2008). The curious incident of the photo that was accused of being false belief: Issues of domain specificity in development, autism, and brain imaging. The Quarterly Journal of Experimental Psychology, 61, 7689. CrossRefGoogle ScholarPubMed
Phelps, E., O’Connor, K., Cunningham, W., Funayama, E., Gatenby, J., Gore, J., Banaji, M. (2000). Performance on indirect measures of race evaluation predicts amygdala activation. Journal of Cognitive Neuroscience, 12, 729738. CrossRefGoogle ScholarPubMed
Premack, D., & Woodruff, G. (1978). Does the chimpanzee have a "theory of mind"? Behavioral and Brain Sciences, 4. CrossRefGoogle Scholar
Rothmayr, C., Sodian, B., Hajak, G., Dohnel, K., Meinhardt, J., & Sommer, M. (2010). Common and distinct neural networks for false-belief reasoning and inhibitory control. NeuroImage, 56, 17051713. CrossRefGoogle ScholarPubMed
Samson, D., Apperley, I., Chiavarino, C., & Humphreys, G. (2004). Left temporoparietal junction is necessary for representing someone else’s beliefs. Nature Neuroscience, 7, 499500. CrossRefGoogle Scholar
Saxe, R. (2009). The neural evidence for simulation is weaker than i think you think it is. Philosophical Studies, 144, 447456. CrossRefGoogle Scholar
Saxe, R. Leslieand, A., & German, T. (2010). The right temporo-parietal junction: A specific brain region for thinking about thoughts. Handbook of theory of mind. Hillsdale: Erlbaum. Google Scholar
Saxe, R., & Kanwisher, N. (2003). People thinking about thinking people. The role of the temporo-parietal junction in “theory of mind”. Neuroimage, 19, 18351842. CrossRefGoogle ScholarPubMed
Saxe, R., Whitfield-Gabrieli, S., Scholz, J., & Pelphrey, K. (2009). Brain regions for perceiving and reasoning about other people in school-aged children. Child Development, 80, 11971209. CrossRefGoogle ScholarPubMed
Taylor, J., Rastle, K., & Davis, M. (2014). Distinct neural specializations for learning to read words and name objects. Journal of Cognitive Neuroscience, 26, 21282154. CrossRefGoogle ScholarPubMed
Tofghi, D., & Enders, C. K. Hancockand, G. R., & Samulelsen, K. M. (2007). Identifying the correct number of classes in mixture models. Advances in latent variable mixture models, Greenwich: Information Age. 317341. Google Scholar
Turner, B., Forstmann, B., Wagenmakers, E., Brown, S., Sederberg, P., & Steyvers, M. (2013). A bayesian framework for simultaneouslymodeling neural and behavioral data. NeuroImage, 72, 193206. CrossRefGoogle ScholarPubMed
Turner, B., Wang, T., & Merkle, E. C. (2017). Factor analysis linking functions for simultaneously modeling neural and behavioral data. NeuroImage, 153, 2848. CrossRefGoogle ScholarPubMed
van der Linden, W. J. (2007). A hierarchical framework for modeling speed and accuracy on test items. Psychometrika, 72, 287308. CrossRefGoogle Scholar
Wang, C., Fan, Z., Chang, H., & Douglas, J. (2013). A semiparametric model for jointly analyzing response times and accuracy in computerized testing. Journal of Educational and Behavioral Statistics, 38, 381417. CrossRefGoogle Scholar
Williams, M., Dang, S., & Kanwisher, N. (2007). Only some spatial patterns of fmri response are read out in task performance. Nature Neuroscience, 10, 685686. CrossRefGoogle ScholarPubMed
Yarkoni, T., Barch, D., Gray, J., Conturo, T., & Braver, T. (2009). BOLD correlates of trial-by-trial reaction time variability in gray and white matter: A multi-study fMRI analysis. PloS ONE, 4, e4257CrossRefGoogle Scholar
Young, L., Dodell-Feder, D., & Saxe, R. (2010). What gets the attention of the temporo-parietal junction? An fMRI investigation of attention and theory of mind. Neuropsychologia, 48, 26582664. 20470808 CrossRefGoogle ScholarPubMed