Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-08T11:27:46.110Z Has data issue: false hasContentIssue false

Three-Mode Orthomax Rotation

Published online by Cambridge University Press:  01 January 2025

Henk A. L. Kiers*
Affiliation:
University of Groningen
*
Requests for reprints should be sent to Henk A. L. Kiers, Department of Psychology, Grote Kruisstraat 2/l, 9712 TS Groningen, THE NETHERLANDS.

Abstract

Factor analysis and principal components analysis (PCA) are often followed by an orthomax rotation to rotate a loading matrix to simple structure. The simple structure is usually defined in terms of the simplicity of the columns of the loading matrix. In Three-mode PCA, rotational freedom of the so called core (a three-way array relating components for the three different modes) can be used similarly to find a simple structure of the core. Simple structure of the core can be defined with respect to all three modes simultaneously, possibly with different emphases on the different modes. The present paper provides a fully flexible approach for orthomax rotation of the core to simple structure with respect to three modes simultaneously. Computationally, this approach relies on repeated (two-way) orthomax applied to supermatrices containing the frontal, lateral or horizontal slabs, respectively. The procedure is illustrated by means of a number of exemplary analyses. As a by-product, application of the Three-mode Orthomax procedures to two-way arrays is shown to reveal interesting relations with and interpretations of existing two-way simple structure rotation techniques.

Type
Original Paper
Copyright
Copyright © 1997 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This research has been made possible by a fellowship from the Royal Netherlands Academy of Arts and Sciences to the author. The author is obliged to Jos ten Berge and two anonymous reviewers for useful comments on an earlier version of this paper.

References

Carroll, J. B. (1953). An analytic solution for approximating simple structure in factor analysis. Psychometrika, 18, 2338.CrossRefGoogle Scholar
Clarkson, D. B., Jennrich, R. I. (1988). Quartic rotation criteria and algorithms. Psychometrika, 53, 251259.CrossRefGoogle Scholar
Cohen, H. S. (1974, March). Three-mode rotation to approximate INDSCAL structure (TRIAS). Paper presented at the Psychometric Society Meeting, Palo Alto.Google Scholar
Cohen, H. S. (1975). Further thoughts on three-mode rotation to INDSCAL structure, with jackknifed confidence regions for points. Paper presented at U.S.-Japan seminar on Theory, Methods and Applications of Multidimensional Scaling and Related Techniques, La Jolla.Google Scholar
Crawford, C. B., Ferguson, G. A. (1970). A general rotation criterion and its use in orthogonal rotation. Psychometrika, 35, 321332.CrossRefGoogle Scholar
Doledec, S., Chessel, D. (1987). Rythmes saisonniers et composantes stationnelles en milieu aquatique. I.-Description d'un plan d'observation complet par projection de variables [Seasonal rhythms and stationary components in aquatic environments. I.-Description of a complete observation scheme by projection of variables]. Acta Oecologia/Ocologia Generalis, 8, 403406.Google Scholar
Ferguson, G. A. (1954). The concept of parsimony in factor analysis. Psychometrika, 19, 281290.CrossRefGoogle Scholar
Harris, C. W., Kaiser, H. F. (1964). Oblique factor analytic solutions by orthogonal transformations. Psychometrika, 29, 347362.CrossRefGoogle Scholar
Harshman, R. A. (1970). Foundations of the PARAFAC procedure: models and conditions for an “explanatory” multi-mode factor analysis (pp. 184). Los Angeles, CA: University of California at Los Angeles.Google Scholar
Harshman, R. A., Lundy, M. E. (1984). The PARAFAC model for three-way factor analysis and multidimensional scaling. In Law, H. G., Snyder, C. W., Hattie, J. A., McDonald, R. P. (Eds.), Research methods for multimode data analysis (pp. 122215). New York: Praeger.Google Scholar
Harshman, R. A., Lundy, M. E. (1984). Data preprocessing and the extended PARAFAC model. In Law, H. G., Snyder, C. W., Hattie, J. A., McDonald, R. P. (Eds.), Research methods for multimode data analysis (pp. 216284). New York: Praeger.Google Scholar
Hendrickson, A. E., White, P. O. (1964). PROMAX: A quick method for rotation to oblique simple structure. British Journal of Statistical Psychology, 17, 6570.CrossRefGoogle Scholar
Jennrich, R. I. (1970). Orthogonal rotation algorithms. Psychometrika, 35, 229235.CrossRefGoogle Scholar
Kaiser, H. F. (1958). The varimax criterion for analytic rotation in factor analysis. Psychometrika, 23, 187200.CrossRefGoogle Scholar
Kapteyn, A., Neudecker, H., Wansbeek, T. (1986). An approach to n-mode components analysis. Psychometrika, 51, 269275.CrossRefGoogle Scholar
Kiers, H. A. L. (1991). Hierarchical relations among three-way methods. Psychometrika, 56, 449470.CrossRefGoogle Scholar
Kiers, H. A. L. (1992). TUCKALS core rotations and constrained TUCKALS modelling. Statistica Applicata, 4, 659667.Google Scholar
Kroonenberg, P. M. (1983). Three mode principal component analysis: Theory and applications, Leiden: DSWO press.Google Scholar
Kroonenberg, P. M., de Leeuw, J. (1980). Principal component analysis of three-mode data by means of alternating least squares algorithms. Psychometrika, 45, 6997.CrossRefGoogle Scholar
Kroonenberg, P. M., ten Berge, J. M. F., Brouwer, P., Kiers, H. A. L. (1989). Gram-Schmidt versus Bauer-Rutishauser in alternating least-squares algorithms for three-mode component analysis. Computational Statistics Quarterly, 5, 8187.Google Scholar
Kruskal, J. B. (1988, June). Simple structure for three-way data: A new method intermediate between 3-mode factor analysis and PARAFAC-CANDECOMP. Paper presented at the 53rd Annual Meeting of the Psychometric Society, Los Angeles.Google Scholar
Lastovicka, J. L. (1981). The extension of component analysis to four-mode matrices. Psychometrika, 46, 4757.CrossRefGoogle Scholar
MacCallum, R. C. (1976). Transformations of a three-mode multidimensional scaling solution to INDSCAL form. Psychometrika, 41, 385400.CrossRefGoogle Scholar
Mulaik, S. A. (1972). The foundations of factor analysis, New York: McGraw-Hill.Google Scholar
Murakami, T. (1983). Quasi three-mode principal component analysis—A method for assessing factor change. Behaviormetrika, 14, 2748.CrossRefGoogle Scholar
Neuhaus, J. O., Wrigley, C. (1954). The quartimax method: An analytic approach to orthogonal simple structure. British Journal of Mathematical and Statistical Psychology, 7, 8191.CrossRefGoogle Scholar
Polit, E. (1986). Une n-acp d'un hypercube de données [N-way principal components analysis for a hypercube of data]. Unpublished doctoral thesis, Université de Sciences Sociales de Grenoble.Google Scholar
Rocci, R. (1992). Three-mode factor analysis with binary core and orthonormality constraints. Journal of the Italian Statistical Society, 3, 413422.CrossRefGoogle Scholar
Saunders, D. R. (1953). An analytic method for rotation to orthogonal simple structure, Princeton, NJ: Educational Testing Service.CrossRefGoogle Scholar
ten Berge, J. M. F. (1995). Suppressing permutations or rigid planar rotations: A remedy against nonoptimal varimax rotations. Psychometrika, 60, 437446.CrossRefGoogle Scholar
ten Berge, J. M. F., de Leeuw, J., Kroonenberg, P. M. (1987). Some additional results on principal components analysis of three-mode data by means of alternating least squares algorithms. Psychometrika, 52, 183191.CrossRefGoogle Scholar
Tucker, L. R. (1951). A method for synthesis of factor analysis studies, Washington DC: Department of the Army.CrossRefGoogle Scholar
Tucker, L. R. (1966). Some mathematical notes on three-mode factor analysis. Psychometrika, 31, 279311.CrossRefGoogle ScholarPubMed