Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-08T12:00:26.820Z Has data issue: false hasContentIssue false

T. A. Walls & J. L. Schafer (Eds.) (2006). Models for intensive longitudinal data. New York: Oxford University Press. 288+xxii pp. US$ 65.00. ISBN: 13-9780195173444.

Review products

T. A. Walls & J. L. Schafer (Eds.) (2006). Models for intensive longitudinal data. New York: Oxford University Press. 288+xxii pp. US$ 65.00. ISBN: 13-9780195173444.

Published online by Cambridge University Press:  01 January 2025

Kees van Montfort*
Affiliation:
Free University Amsterdam and Nyenrode University

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Book Review
Copyright
Copyright © 2007 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boker, S.M., Wenger, M.J. (2006). Data analytic techniques for dynamic systems in the social and behavioral sciences, Mahwah, NJ: Erlbaum.Google Scholar
Bollen, K.A., Curran, P.J. (2006). Latent curve models: A structural equation perspective, Hoboken, NJ: Wiley Interscience.Google Scholar
Cohen, J., Cohen, P., West, S., Aiken, L.A. (2003). Applied multiple regression analysis for the behavioral sciences, Mahwah, NJ: Erlbaum.Google Scholar
Collins, L., & Sayer, A. (2001). New methods for the analysis of change. Washington, DC: American Psychological Association.CrossRefGoogle Scholar
Fitzmaurice, G.M., Laird, N.M., Ware, J.H. (2004). Applied longitudinal analysis, Hoboken, NJ: Wiley.Google Scholar
Horn, J.L., & Collins, L. (1991). Best methods for the analysis of change: Recent advances, unanswered questions, future directions. Washington, DC: American Psychological Association.Google Scholar
Keren, G., Lewis, C. (1993). A handbook of data analysis in the behavioral sciences: Methodologial issues, Hillsdale, NJ: Erlbaum.Google Scholar
Levine, R.L., Fitzgerald, H. (1992). Analysis of dynamic psychological systems, New York: Plenum Press.CrossRefGoogle Scholar
Little, T.D., Schnabel, K.U., Baumert, J. (2000). Modeling longitudinal and multiple-group data: Practical issues, applied approaches and scientific examples, Mahwah, NJ: Erlbaum.CrossRefGoogle Scholar
Madeau, A., McArdle, J.J. (2005). Contemporary advances in psychometrics, Mahwah, NJ: Erlbaum.Google Scholar
Moskowitz, D.S., Hershberger, S.L. (2002). Modeling intra-individual variability with repeated measures data: Method and applications, Mahwah, NJ: Erlbaum.Google Scholar
Newell, K.M., Molenaar, P.C.M. (1998). Application of nonlinear dynamics to developmental process modeling, Mahwah, NJ: Erlbaum.Google Scholar
Van Montfort, K., Oud, J., Sattora, A. (2006). Longitudinal models in the behavioral and related sciences, New York: Erlbaum.Google Scholar