Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-08T11:54:11.853Z Has data issue: false hasContentIssue false

Statistical Consistency and Hypothesis Testing for Nonmetric Multidimensional Scaling

Published online by Cambridge University Press:  01 January 2025

Henry E. Brady*
Affiliation:
Department of Government, Harvard University
*
Requests for reprints should be sent to Henry E. Brady, Department of Government, Harvard University, Cambridge, MA 02138.

Abstract

The properties of nonmetric multidimensional scaling (NMDS) are explored by specifying statistical models, proving statistical consistency, and developing hypothesis testing procedures. Statistical models with errors in the dependent and independent variables are described for quantitative and qualitative data. For these models, statistical consistency often depends crucially upon how error enters the model and how data are collected and summarized (e.g., by means, medians, or rank statistics). A maximum likelihood estimator for NMDS is developed, and its relationship to the standard Shepard-Kruskal estimation method is described. This maximum likelihood framework is used to develop a method for testing the overall fit of the model.

Type
Original Paper
Copyright
Copyright © 1985 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

In the preparation of this manuscript Chris Achen helped in innumerable ways by providing a judicious combination of criticism and encouragement. Professors J. O. Ramsay and Roger Shepard generously took the time to respond to an earlier version. I take responsibility for all remaining errors.

References

Anderson, T. W., Rubin, R. (1956). Statistical inference in factor analysis. Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, (Vol. V), Berkeley: University of California Press.Google Scholar
Andrews, D. F., Bickel, P. J., Hampel, F. R., Huber, P. J., Rogers, W. H., Tukey, J. W. (1972). Robust estimates of location: Survey and advances, Princeton, NJ: Princeton University Press.Google Scholar
Barlow, R. E., Bartholomew, D. J., Bremmer, J. M., Brunk, H. D. (1972). Statistical inference under order restrictions: The theory and application of isotonic regression, New York: John Wiley.Google Scholar
Barnett, V. D. (1973). Comparative statistical inference, New York: John Wiley.Google Scholar
Busemeyer, J. (1980). Importance of measurement theory, error theory, and experimental design for testing the significance of interactions. Psychological Bulletin, 88, 237244.CrossRefGoogle Scholar
Carroll, J. D. (1976). Spatial, non-spatial, and hybrid models for scaling. Psychometrika, 41, 439463.CrossRefGoogle Scholar
Carroll, J. D., Arabie, P. (1980). Multidimensional Scaling. Annual Review of Psychology, 31, 607649.CrossRefGoogle ScholarPubMed
Cliff, N. (1973). Scaling. Annual Review of Psychology, 24, 473506.CrossRefGoogle Scholar
Coombs, C. H. (1964). A Theory of Data, New York: John Wiley.Google Scholar
Coombs, C. H., Kao, R. C. (1960). On a connection between factor analysis and multidimensional unfolding. Psychometrika, 25, 219231.CrossRefGoogle Scholar
Cramer, H. (1946). Mathematical methods of statistics, Princeton, NJ: Princeton University Press.Google Scholar
Davison, M. L. (1983). Multidimensional scaling, New York: John Wiley and Sons.Google Scholar
Green, P. E., Carmone, F. J. (1970). Multidimensional scaling and related techniques in marketing analysis, Boston: Allyn and Bacon.Google Scholar
Green, P. E., Rao, V. R. (1972). Applied multidimensional scaling: A comparison of approaches and algorithms, New York: Holt, Rinehart & Winston.Google Scholar
Huber, P. J. (1967). The behavior of maximum likelihood estimates under nonstandard conditions. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability (Vol. 1 (pp. 1233). Berkeley: University of California Press.Google Scholar
Huber, P. J. (1981). Robust statistics, New York: John Wiley and Sons.CrossRefGoogle Scholar
Isaac, P. D., Poor, D. S. (1974). On the determination of appropriate dimensionality in data with error. Psychometrika, 39, 91109.CrossRefGoogle Scholar
Kalman, R. E. (1982). Identifiability and problems of model selection in econometrics. In Hildenbrand, W. (Eds.), Advances in econometrics (pp. 169207). Cambridge: Cambridge University Press.Google Scholar
Kiefer, J., Wolfowitz, J. (1956). Consistency of the maximum likelihood estimator in the presence of infinitely many incidental parameters. Annals of Mathematical Statistics, 27, 887906.CrossRefGoogle Scholar
Klahr, D. A. (1969). A Monte Carlo investigation of the statistical significance of Kruskal's nonmetric scaling procedures. Psychometrika, 34, 319330.CrossRefGoogle Scholar
Kruskal, J. B. (1964). Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika, 29, 128.CrossRefGoogle Scholar
Kruskal, J. B. (1964). Non-metric multidimensional scaling: A numerical method. Psychometrika, 29, 115129.CrossRefGoogle Scholar
Kruskal, J. B. (1971). Monotone regression: Continuity and differentiability properties. Psychometrika, 36, 5762.CrossRefGoogle Scholar
Kruskal, J. B., Shepard, R. N. (1974). A non-metric variety of linear factor analysis. Psychometrika, 39, 123157.CrossRefGoogle Scholar
Kruskal, J. B., Wish, M. (1978). Multidimensional scaling, Beverly Hills: Sage.CrossRefGoogle Scholar
Lancaster, H. O. (1969). The chi-squared distribution, New York: John Wiley & Sons.Google Scholar
Lehmann, E. L. (1959). Testing Statistical Hypotheses, New York: John Wiley & Sons.Google Scholar
Lingoes, J. C., & Roskam, E. E. (1973). A mathematical and empirical analysis of two multidimensional scaling algorithms. Psychometrika Monograph Supplement, 38, (4, Pt. 2).Google Scholar
Luce, R. D., Suppes, P. (1965). Preference, utility and subjective probability. In Luce, R. D., Bush, R. R., Galanter, E. (Eds.), Handbook of mathematical psychology (Vol. III), New York: John Wiley.Google Scholar
Machina, M. (1983). The economic theory of individual behavior toward risk: Theory, evidence, and new directions, Palo Alto, CA: Stanford University.Google Scholar
Miles, R. E. (1959). The complete amalgamation into blocks, by weighted means, of a finite set of real numbers. Biometrika, 46, 317327.CrossRefGoogle Scholar
Mosteller, F., Rourke, R. (1973). Sturdy Statistics, Reading, MA: Addison-Wesley.Google Scholar
Munkres, J. R. (1975). Topology, Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Muthen, B. (1978). Contributions to the factor analysis of dichotomous variables. Psychometrika, 43, 551560.CrossRefGoogle Scholar
Ramsay, J. O. (1969). Some statistical considerations in multidimensional scaling. Psychometrika, 34, 167182.CrossRefGoogle Scholar
Ramsay, J. O. (1977). Maximum likelihood estimation in multidimensional scaling. Psychometrika, 42, 241266.CrossRefGoogle Scholar
Ramsay, J. O. (1978). Confidence regions for multidimensional scaling analysis. Psychometrika, 43, 145160.CrossRefGoogle Scholar
Rao, C. R. (1973). Linear statistical inference and its applications 2nd ed.,, New York: John Wiley.CrossRefGoogle Scholar
Robertson, T. (1978). Testing for and against an order restriction on multinomial parameters. Journal of the American Statistical Association, 73, 197202.CrossRefGoogle Scholar
Robertson, T., Wegman, E. J. (1978). Likelihood ratio tests for order restrictions in exponential families. The Annals of Statistics, 6, 485505.CrossRefGoogle Scholar
Rothkopf, E. Z. (1957). A measure of stimulus similarity and errors in some paired-associate learning tasks. Journal of Experimental Psychology, 53, 94104.CrossRefGoogle ScholarPubMed
Royden, H. L. (1968). Real Analysis 2nd ed.,, New York: MacMillan.Google Scholar
Schiffman, S. S., Reynolds, M. L., Young, F. W. (1981). Introduction to multidimensional scaling: Theory, methods and applications, New York: Academic Press.Google Scholar
Serfling, R. J. (1980). Approximation theorems of mathematical statistics, New York: John Wiley and Sons.CrossRefGoogle Scholar
Shepard, R. N. (1962). Analysis of proximities: Multidimensional scaling with an unknown distance function. I. Psychometrika, 27, 125140.CrossRefGoogle Scholar
Shepard, R. N. (1962). Analysis of proximities: Multidimensional scaling with an unknown distance function. II. Psychometrika, 27, 219246.CrossRefGoogle Scholar
Shepard, R. N. (1966). Metric structures in ordinal data. Journal of Mathematical Psychology, 3, 287315.CrossRefGoogle Scholar
Shepard, R. N. (1974). Representation of structure in similarity data: Problems and prospects. Psychometrika, 39, 373421.CrossRefGoogle Scholar
Shepard, R. N. (1980). Multidimensional scaling, tree-fitting, and clustering. Science, 210, 390398.CrossRefGoogle ScholarPubMed
Shepard, R. N., Romney, A. K., Nerlove, S. B. (1972). Multidimensional scaling: Theory and applications in the behavioral sciences (Vol. 1), New York: Seminar Press.Google Scholar
Sherman, C. R. (1972). Non-metric MDS: A Monte Carlo study of the basic parameters. Psychometrika, 37, 323355.CrossRefGoogle Scholar
Spence, I. A. (1972). A Monte Carlo evaluation of three nonmetric scaling algorithms. Psychometrika, 37, 461486.CrossRefGoogle Scholar
Spence, I. A., Graef, J. (1974). The determination of the underlying dimensionality of an empirically obtained matrix of proximities. Multivariate Behavioral Research, 9, 331342.CrossRefGoogle ScholarPubMed
Spence, I. A., Ogilvie, J. C. (1973). A table of expected stress values for random rankings in nonmetric multidimensional scaling. Multivariate Behavioral Research, 8, 511517.CrossRefGoogle ScholarPubMed
Stenson, H. H., Knoll, R. L. (1969). Goodness of fit for random rankings in Kruskal's nonmetric scaling procedure. Psychological Bulletin, 71, 122126.CrossRefGoogle Scholar
Tintner, G. (1952). Econometrics, New York: John Wiley and Sons.Google Scholar
Tucker, H. G. (1967). A graduate course in probability, New York: Academic Press.Google Scholar
Wagenaar, W. A., Padmos, P. (1971). Quantitative interpretation of stress in Kruskal's multidimensional scaling technique. British Journal of Mathematical and Statistical Psychology, 24, 101110.CrossRefGoogle Scholar
Wald, A. (1949). Note on the consistency of the maximum likelihood estimate. Annals Mathematical Statistics, 20, 595601.CrossRefGoogle Scholar
Winsberg, S., Ramsay, J. O. (1983). Monotone spline transformations for dimension reduction. Psychometrika, 48, 575595.CrossRefGoogle Scholar
Wonnacott, T. H., Wonnacott, R. J. (1977). Introductory Statistics for Business and Economics, New York: John Wiley.Google Scholar
Young, F. W. (1970). Nonmetric multidimensional scaling: Recovery of metric information. Psychometrika, 35, 455473.CrossRefGoogle Scholar
Young, F. W. (1984). Scaling. Annual Review of Psychology (Vol. 35), Palo Alto, CA: Annual Reviews.Google Scholar
Zinnes, J. L. (1969). Scaling. Annual Review of Psychology (Vol. 20), Palo Alto, CA: Annual Reviews.Google Scholar