Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-07T18:37:47.589Z Has data issue: false hasContentIssue false

Psychometric and Information Processing Properties of Selected Response Time Models

Published online by Cambridge University Press:  01 January 2025

Gerard J. P. Van Breukelen*
Affiliation:
University of Limburg, The Netherlands
*
Requests for reprints should be sent to Gerard J. P. Van Breukelen, Department of Methodology and Statistics, University of Limburg, PO Box 616, 6200 MD Maastricht, THE NETHERLANDS.

Abstract

This paper discusses the compatibility of some response time (RT) models with psychometric and with information processing approaches to response times. First, three psychometrically desirable properties of probabilistic models for binary data, related to the principle of specific objectivity, are adapted to the domain of RT models. One of these is the separability of item and subject parameters, and another is double monotonicity. Next, the compatibility of these psychometric properties with one very popular information processing approach, the serial-additive model, is discussed. Finally, five RT models are analyzed with respect to their compatibility with the psychometric properties, with serial-additive processing and with some alternative types of processing. It is concluded that (a) current psychometric models each satisfy one or more of the psychometric properties, but are not (easily) compatible with serial-additive processing, (b) at least one serial-additive processing model satisfies separability of item and subject parameters, and (c) RT models will more easily satisfy double monotonicity than the other two psychometric properties.

Type
Original Paper
Copyright
Copyright © 1995 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ashby, F. G. (1982). Testing the assumptions of exponential additive reaction-time models. Memory and Cognition, 10, 125134.CrossRefGoogle ScholarPubMed
Bloxom, B. (1985). Considerations in psychometric modeling of response time. Psychometrika, 50, 383397.CrossRefGoogle Scholar
Cramér, H. (1945). Mathematical methods of statistics, Uppsala, Sweden: Almqvist & Wiksells. (Reprinted by Princeton University Press, 1974)Google Scholar
Crow, E. L., Shimizu, K. (1988). Lognormal distributions: Theory and applications, New York: Marcel Dekker.Google Scholar
Dijkstra, A. F. (1990). Cross-modal contacts between graphemes and phonemes: Explorations in bimodal processing. Unpublished doctoral dissertation, University of Nijmegen, Nijmegen, The Netherlands.Google Scholar
Fischer, G. H. (1974). Einführung in die theorie psychologischer tests [Introduction to the theory of psychological tests], Bern: Huber.Google Scholar
Fischer, G. H. (1987). Applying the principle of specific objectivity and of generalizability to the measurement of change. Psychometrika, 52, 565587.CrossRefGoogle Scholar
Fischer, G. H., Kisser, R. (1983). Notes on the exponential latency model and an empirical application. In Wainer, H., Messick, S. (Eds.), Principals of modern psychological measurement (pp. 139157). Hillsdale, NJ: Erlbaum.Google Scholar
Grice, G. R. (1968). Stimulus intensity and response evocation. Psychological Review, 75, 359373.CrossRefGoogle ScholarPubMed
Hohle, R. H. (1965). Inferred components of reaction times as functions of foreperiod duration. Journal of Experimental Psychology, 69, 382386.CrossRefGoogle ScholarPubMed
Irtel, H. (1987). On specific objectivity as a concept in measurement. In Roskam, E. E., Suck, R. (Eds.), Progress in mathematical psychology (pp. 3545). Amsterdam: Elsevier Science Publishers.Google Scholar
Irtel, H. (1993). The uniqueness structure of simple latent trait models. In Fischer, G. H., Laming, D. (Eds.), Contributions to mathematical psychology, psychometrics, and methodology (pp. 265275). New York: Springer.Google Scholar
Kendall, M., Stuart, A. (1977). The Advanced theory of statistics, Vol. I 4th ed.,, London: Griffin.Google Scholar
Luce, R. D. (1986). Response times: Their role in inferring elementary mental organization, New York: Oxford University Press.Google Scholar
Maris, E. (1993). Additive and multiplicative models for gamma distributed random variables, and their application as psychometric models for response times. Psychometrika, 58, 445469.CrossRefGoogle Scholar
Marley, A. A. J. (1989). A random utility family that includes many of the classical models and has closed form choice probabilities and choice reaction times. British Journal of Mathematical and Statistical Psychology, 42, 1336.CrossRefGoogle Scholar
McGill, W. J. (1963). Stochastic latency mechanisms. In Luce, R. D., Bush, R. R., Galanter, E. (Eds.), Handbook of mathematical psychology, vol. I (pp. 309360). New York: Wiley.Google Scholar
McGill, W. J., Gibbon, J. (1965). The general Gamma distribution and reaction times. Journal of Mathematical Psychology, 2, 118.CrossRefGoogle Scholar
Micko, H. C. (1969). A psychological scale for reaction time measurement. Acta Psychologica, 30, 324335.CrossRefGoogle Scholar
Micko, H. C. (1970). Eine Verallgemeinerung des Meßmodells von Rasch mit einer Anwendung auf die Psychophysik der Reaktionen (A generalization of Rasch's measurement model with an application to the psychophysics of reactions). Psychologische Beiträge, 12, 422.Google Scholar
Molenaar, I. W. (1982). Steviger meten met een latent model. Marktonderzoek en Consumentengedrag. Jaarboek van de Nederlandse vereniging van marktonderzoekers 1982 (pp. 217231). Amsterdam: Nederlandse Vereniging van Markt Onderzoekers. (Dutch Society of Market Researchers)Google Scholar
Mokken, R. J. (1971). A theory and procedure of scale analysis, The Hague: Mouton.CrossRefGoogle Scholar
Mokken, R. J., Lewis, C. (1982). A nonparametric approach to the analysis of dichotomous item responses. Applied Psychological Measurement, 6, 417430.CrossRefGoogle Scholar
Mood, A. M., Graybill, F. A., Boes, D. C. (1974). Introduction to the theory of statistics 3rd ed.,, Tokyo: McGraw-Hill.Google Scholar
Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests, Copenhagen: Danish Institute for Educational Research. (Reprinted by the University of Chicago Press, 1980)Google Scholar
Rasch, G. (1977). On specific objectivity. An attempt at formalizing the request for generality and validity of scientific statements. In Blegvad, M. (Eds.), The Danish yearbook of philosophy, Vol. 14 (pp. 5894). Copenhagen: Muynksgaard.Google Scholar
Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85, 59108.CrossRefGoogle Scholar
Roskam, E. E. Ch. I., Jansen, P. G. W. (1984). A new derivation of the Rasch model. In Degreef, E., Van Buggenhout, J. (Eds.), Trends in mathematical psychology (pp. 293307). Amsterdam: Elsevier.CrossRefGoogle Scholar
Scheiblechner, H. (1979). Specifically objective stochastic latency mechanisms. Journal of Mathematical Psychology, 19, 1838.CrossRefGoogle Scholar
Scheiblechner, H. (1985). Psychometric models for speed-test construction: The linear exponential model. In Embretson, S. E. (Eds.), Test design, developments in psychology and psychometrics (pp. 219244). London: Academic Press.Google Scholar
Sijtsma, K., Molenaar, I. W. (1987). Reliability of test scores in nonparametric item response theory. Psychometrika, 52, 7997.CrossRefGoogle Scholar
Sternberg, R. J. (1977). Component processes in analogical reasoning. Psychological Review, 84, 353378.CrossRefGoogle Scholar
Sternberg, S. (1966). High speed scanning in human memory. Science, 153, 652654.CrossRefGoogle ScholarPubMed
Sternberg, S. (1969). The discovery of processing stages: Extensions of Donders' method. Acta Psychologica, 30, 276315.CrossRefGoogle Scholar
Thissen, D. (1983). Timed testing: An approach using item response theory. In Weiss, D. J. (Eds.), New horizons in testing: Latent trait theory and computerized adaptive testing (pp. 179203). New York: Academic Press.Google Scholar
Thorin, O. (1977). On the infinite divisibility of the lognormal distribution. Scandinavian Actuarial Journal, 3, 121148.CrossRefGoogle Scholar
Townsend, J. T. (1990). Truth and consequences of ordinal differences in statistical distributions: Toward a theory of hierarchical inference. Psychological Bulletin, 108, 551567.CrossRefGoogle Scholar
Townsend, J. T., Ashby, F. G. (1983). The stochastic modeling of elementary psychological processes, Cambridge: University Press.Google Scholar
Townsend, J. T., Schweickert, R. (1989). Toward the trichotomy method of reaction times: Laying the foundations of stochastic mental networks. Journal of Mathematical Psychology, 33, 309327.CrossRefGoogle Scholar
Tutz, G. (1989). Latent Trait Modelle für ordinale Beobachtungen [Latent trait models for ordinal observations], Berlin: Springer.CrossRefGoogle Scholar
Vorberg, D., Ulrich, R. (1987). Random search with unequal search rates: Serial and parallel generalizations of McGill's model. Journal of Mathematical Psychology, 31, 123.CrossRefGoogle Scholar
Vorberg, D., Schwarz, W. (1990). Rasch-representable reaction time distributions. Psychometrika, 55, 617632.CrossRefGoogle Scholar