Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-07T19:02:03.226Z Has data issue: false hasContentIssue false

Paul E. Green, Frank J. CarmoneJr., and Scott M. Smith. Multidimensional Scaling. Concepts and Applications. Boston: Allyn and Bacon, I989. Pp. viii + 407, $60.

Review products

Paul E. Green, Frank J. CarmoneJr., and Scott M. Smith. Multidimensional Scaling. Concepts and Applications. Boston: Allyn and Bacon, I989. Pp. viii + 407, $60.

Published online by Cambridge University Press:  01 January 2025

Constantino Arce*
Affiliation:
University of Santiago de Compostela, Spain

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Book Review
Copyright
Copyright © 1991 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arabie, P., Carroll, J. D. (1980). MAPCLUS: A mathematical programming approach to fitting the ADCLUS model. Psychometrika, 45, 211235.CrossRefGoogle Scholar
Arabie, P., Carroll, J. D., DeSarbo, W. S. (1987). Three-way scaling and clustering, Newbury Park, CA: Sage.CrossRefGoogle Scholar
Arabie, P., Carroll, J. D., DeSarbo, W. S., Wind, J. (1981). Overlapping clustering: A new method for product positioning. Journal of Marketing Research, 18, 310317.CrossRefGoogle Scholar
Carroll, J. D. (1972). Individual differences and multidimensional scaling. In Shepard, R. N., Romney, A. K., Nerlove, S. (Eds.), Multidimensional scaling: Theory and applications in the social sciences, Volume 1: Theory (pp. 105155). New York: Seminaar Press.Google Scholar
Carroll, J. D. (1980). Models and methods for multidimensional analysis of preferential choice (or other dominance) data. In Lantermann, E. D., Feger, H. (Eds.), Similarity and choice (pp. 234289). Viena: Hans Huber.Google Scholar
Carroll, J. D., Arabie, P. (1980). Multidimensional scaling. In Rosensweig, M. R., Porter, L. W. (Eds.), Annual Review of Psychology (pp. 607649). Palo Alto, CA: Annual Reviews.Google Scholar
Carroll, J. D., Arabie, P. (1982). How to use INDCLUS: A computer program for fitting the individual differences generalization of the ADCLUS model and the MAPCLUS algorithm, Murray Hill, NJ: AT&T Bell Laboratories.Google Scholar
Carroll, J. D., Arabie, P. (1983). INDCLUS. An individual differences generalization of the ADCLUS model and the MAPCLUS algorithm. Psychometrika, 48, 157169.CrossRefGoogle Scholar
Carroll, J. D., & Chang, J. J. (1964, October). Non-parametric multidimensional analysis of paired-comparisons data. Paper presented at the joint meeting of the Psychometric and Psychonomic Societies, Niagara Falls.CrossRefGoogle Scholar
Carroll, J. D., & Chang, J. J. (1970). Analysis of individual differences in multidimensional scaling via N-way generalization of Eckart-Young decomposition. Psychometrika, 35, 283319.CrossRefGoogle Scholar
Carroll, J. D., Green, P. E., & Schaffer, C. M. (1987). Comparing interpoint distances in correspondence analysis: A clarification. Journal of Marketing Research, 24, 445450.CrossRefGoogle Scholar
Chang, J. J., & Carroll, J. D. (1968). How to use PROFIT, a computer program for property fitting by optimizing nonlinear or linear correlation, Murray Hill, NJ: AT&T Bell Laboratories.Google Scholar
Chang, J. J., & Carroll, J. D. (1969). How to use INDSCAL, a computer program for canonical decomposition of N-way tables and individual differences in multidimensional scaling, Murray Hill, NJ: AT&T Bell Laboratories.Google Scholar
Chang, J. J., & Carroll, J. D. (1969). How to use MDPREF, a computer program for multidimensional analysis of preference data, Murray Hill, NJ: AT&T Bell Laboratories.Google Scholar
Chang, J. J., & Carroll, J. D. (1972). How to use PREFMAP and PREFMAP2—Programs which relate preference data to multidimensional scaling solution, Murray Hill, NJ: AT&T Bell Laboratories.Google Scholar
Coombs, C. H. (1964). A theory of data, New York: John Wiley & Sons.Google Scholar
Cooper, L. G. (1983). A review of multidimensional scaling in marketing research. Applied Psychological Measurement, 7, 427450.CrossRefGoogle Scholar
de Leeuw, J. et al. (1977). Applications of convex analysis to multidimensional scaling. In Barra, J. R. et al. (Eds.), Recent development in statistics (pp. 133145). Amsterdam: North-Holland.Google Scholar
de Leeuw, J., & Heiser, W. J. (1977). Convergence of correction matrix algorithms for multidimensional scaling. In Lingoes, J. (Eds.), Geometric representations of relational data (pp. 735752). Ann Arbor, MI: Mathesis press.Google Scholar
Green, P. E., & Carmone, F. J. (1970). Multidimensional scaling and related techniques in marketing research, Boston: Allyn and Bacon.Google Scholar
Harris, B. (1981). Howard-Harris hierarchical clustering, Philadelphia: University of Pennsylvania.Google Scholar
Heiser, W. J. (1989). The city-block model for three-way multidimensional scaling. In Coppi, R., & Bolasco, S. (Eds.), Multiway data analysis (pp. 395404). Amsterdam: Elsevier.Google Scholar
Hoffman, D. L., & Franke, G. R. (1986). Correspondence analysis: Graphical representation of categorical data in marketing research. Journal of Marketing Research, 23, 213227.CrossRefGoogle Scholar
Kruskal, J. B., & Wish, M. (1978). Multidimensional scaling, Newbury Park, CA: Sage.CrossRefGoogle Scholar
Kruskal, J. B., Young, F. W., & Seery, J. B. (1973). How to use KYST, a very flexible program to do multidimensional scaling and unfolding, Murray Hill, NJ: AT&T Bell Laboratories.Google Scholar
Kruskal, J. B., Young, F. W., & Seery, J. B. (1977). How to use KYST2A, a very flexible program to do multidimensional scaling and unfolding, Murray Hill, NJ: AT&T Bell Laboratories.Google Scholar
Pruzansky, S. (1975). How to use SINDSCAL: A computer program for individual differences in multidimensional scaling, Murray Hill, NJ: AT&T Bell Laboratories.Google Scholar
Punj, G., & Stewart, D. W. (1983). Cluster analysis in marketing research: Review and suggestions for application. Journal of Marketing Research, 20, 134148.CrossRefGoogle Scholar
Ramsay, J. O. (1977). Maximum likelihood estimation in multidimensional scaling. Psychometrika, 42, 241246.CrossRefGoogle Scholar
Ramsay, J. O. (1978). MULTISCALE: Four programs for multidimensional scaling by the method of maximum likelihood, Chicago: National Educational Resources.Google Scholar
Ramsay, J. O. (1982). MULTISCALE-II manual, Mooresville, IN: International Educational Services.Google Scholar
Schiffman, S. S., Reynolds, M. L., & Young, F. W. (1981). Introduction to multidimensional scaling: Theory, methods, and applications, New York: Academic Press.Google Scholar
Shepard, R. N., & Arabie, P. (1979). Additive clustering: Representation of similarities as combinations of discrete overlapping properties. Psychological Review, 86(2), 87123.CrossRefGoogle Scholar
Stoop, I., & de Leeuw, J. (1982). How to use SMACOF-1B, The Netherlands: Department of Data Theory, University of Leiden.Google Scholar
Takane, Y., Young, F. W., & de Leeuw, J. (1977). Nonmetric individual differences multidimensional scaling: An alternating least-squares method with optimal scaling features. Psychometrika, 42, 767.CrossRefGoogle Scholar