Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-07T18:34:44.334Z Has data issue: false hasContentIssue false

Patrick Suppes, David H. Krantz, R. Duncan Luce, and Amos Tversky. Foundations of Measurement, Volume II: Geometrical, Threshold, and Probabilistic Representations. San Diego: Academic Press, 1990, XV + 493 pp. $79.50. - R. Duncan Luce, David H. Krantz, Patrick Suppes, and Amos Tversky. Foundations of Measurement, Volume III: Representation, Axiomatization, and Invariance. San Diego: Academic Press, 1990, XV + 356 pp. $53.55.

Review products

Patrick Suppes, David H. Krantz, R. Duncan Luce, and Amos Tversky. Foundations of Measurement, Volume II: Geometrical, Threshold, and Probabilistic Representations. San Diego: Academic Press, 1990, XV + 493 pp. $79.50.

R. Duncan Luce, David H. Krantz, Patrick Suppes, and Amos Tversky. Foundations of Measurement, Volume III: Representation, Axiomatization, and Invariance. San Diego: Academic Press, 1990, XV + 356 pp. $53.55.

Published online by Cambridge University Press:  01 January 2025

J. O. Ramsay*
Affiliation:
McGill University

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Book Review
Copyright
Copyright © 1991 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aczél, J. (1966). Lectures on functional equations and their applications, New York: Academic Press.Google Scholar
Aczél, J., & Dhombres, J. (1989). Functional equations in several variables with applications to mathematics, information theory and to the natural and social sciences, Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Beals, R., & Krantz, D. (1967). Metrics and geodesics induced by order relations. Mathematische Zeitschrift, 101, 285298.CrossRefGoogle Scholar
Beals, R., & Krantz, D., Tversky, A. (1968). Foundations of multidimensional scaling. Psychological Review, 75, 127142.CrossRefGoogle ScholarPubMed
Campbell, N. R. (1920). Physics: The elements, London: Cambridge University Press.Google Scholar
Ellis, B. (1966). Basic concepts in measurement, London: Cambridge University Press.Google Scholar
Fishburn, P. C. (1985). Interval orders and interval graphs, New York: Wiley.CrossRefGoogle Scholar
Hölder, O. (1901). Die Axiome der quantität und die lehre von mass [The axioms of quantity and the theory of mass]. Ber. Säch., Gesellsch. Wiss., Math-Phy. Klasse, 53, 164.Google Scholar
Krantz, D. H., Luce, R. D., Suppes, P., & Tversky, A. (1971). Foundations of measurement, Volume I, New York: Academic Press.Google Scholar
Luce, R. D. (1959). On the possible psychophysical laws. Psychological Review, 66, 8195.CrossRefGoogle ScholarPubMed
Luce, R. D., Bush, R. R., & Galanter, E. (1963). Handbook of mathematical psychology, Volume I, New York: Wiley.Google Scholar
Luce, R. D., & Tukey, J. W. (1964). Simultaneous conjoint measurement: A new type of fundamental measurement. Journal of Mathematical Psychology, 1, 127.CrossRefGoogle Scholar
Narens, L. (1985). Abstract measurement theory, Cambridge, MA: MIT Press.Google Scholar
Pfanzagl, J. (1968). A theory of measurement, New York: Wiley.Google Scholar
Ramsay, J. O. (1975). Review of “Foundations of measurement, Volume I.”. Psychometrika, 40, 257262.CrossRefGoogle Scholar
Roberts, F. S. (1979). Measurement theory with applications to decision making, utility, and the social sciences, Reading, MA: Addison-Wesley.Google Scholar
Scott, D., & Suppes, P. (1958). Foundational aspects of theories of measurement. Journal of Symbolic Logic, 23, 113128.CrossRefGoogle Scholar
Stevens, S. S. (1946). On the theory of scales of measurement. Science, 103, 677680.CrossRefGoogle ScholarPubMed
Suppes, P. (1951). A set of independent axioms for extensive quantities. Portugaliae Mathematica, 10, 163172.Google Scholar
Suppes, P., & Zinnes, J. (1963). Basic measurement theory. In Luce, R. D., Bush, R. R. & Galanter, E. (Eds.), Handbook of mathematical psychology, Volume I (pp. 176). New York: Wiley.Google Scholar
Tarski, A. (1954). Contributions to the theory of models, I and II. Indagationes Mathematicae, 16, 572588.CrossRefGoogle Scholar
Tversky, A. (1967). A general theory of polynomial conjoint measurement. Journal of Mathematical Psychology, 4, 120.CrossRefGoogle Scholar
Tversky, A. (1967). Additivity, utility, and subjective probability. Journal of Mathematical Psychology, 4, 175201.CrossRefGoogle Scholar
Tversky, A. (1977). Features of similarity. Psychological Review, 84, 327352.CrossRefGoogle Scholar