Published online by Cambridge University Press: 01 January 2025
An important feature of distance-based principal components analysis, is that the variables can be optimally transformed. For monotone spline transformation, a nonnegative least-squares problem with a length constraint has to be solved in each iteration. As an alternative algorithm to Lawson and Hanson (1974), we propose the Alternating Length-Constrained Non-Negative Least-Squares (ALC-NNLS) algorithm, which minimizes the nonnegative least-squares loss function over the parameters under a length constraint, by alternatingly minimizing over one parameter while keeping the others fixed. Several properties of the new algorithm are discussed. A Monte Carlo study is presented which shows that for most cases in distance-based principal components analysis, ALC-NNLS performs as good as the method of Lawson and Hanson or sometimes even better in terms of the quality of the solution.
Supported by The Netherlands Organization for Scientific Research (NWO) by grant nr. 030-56403 for the “PIONEER” project “Subject Oriented Multivariate Analysis” to the third author. We would like to thank the anonymous referees for their valuable remarks that have improved the quality of this paper.