Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-07T17:11:13.171Z Has data issue: false hasContentIssue false

On the Relationship between iTem Response Theory and Factor Analysis of Discretized Variables

Published online by Cambridge University Press:  01 January 2025

Yoshio Takane*
Affiliation:
McGill University
Jan de Leeuw
Affiliation:
University of Leiden
*
Requests for reprints should be sent to Yoshio Takane, Department of Psychology, McGill University 1205 Dr. Penfield Ave., Montreal, PQ H3A 1B1 CANADA.

Abstract

Equivalence of marginal likelihood of the two-parameter normal ogive model in item response theory (IRT) and factor analysis of dichotomized variables (FA) was formally proved. The basic result on the dichotomous variables was extended to multicategory cases, both ordered and unordered categorical data. Pair comparison data arising from multiple-judgment sampling were discussed as a special case of the unordered categorical data. A taxonomy of data for the IRT and FA models was also attempted.

Type
Original Paper
Copyright
Copyright © 1987 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The work reported in this paper has been supported by Grant A6394 to the first author from the Natural Sciences and Engineering Research Council of Canada.

References

Akaike, H. (1980). Likelihood and the Bayes procedure. In Bernardo, J. M. et al. (Eds.), Bayesian statistics. Valencia University Press.Google Scholar
Andersen, E. B. (1980). Discrete statistical models with social science applications, Amsterdam: North-Holland.Google Scholar
Basu, D. (1977). On elimination of nuisance parameters. Journal of the American Statistical Association, 22, 229243.Google Scholar
Bartholomew, D. J. (1983). Latent variable models for ordered categorical data. Journal of Econometrics, 22, 229243.CrossRefGoogle Scholar
Bartholomew, D. J. (1985, July). A unified view of factor analysis, latent structure analysis and scaling. Invited paper given at the 4-th European Meeting of the Psychometric Society and Classification Societies, Cambridge.Google Scholar
Bock, R. D. (1972). Estimating item parameters and latent ability when responses are scored in two or more nominal categories. Psychometrika, 37, 2951.CrossRefGoogle Scholar
Bock, R. D. (1975). Multivariate statistical methods in behavioral research, New York: McGraw Hill.Google Scholar
Bock, R. D. (1984, June). Full information item factor analysis. Paper presented at the Joint Meeting of the Classification Society and the Psychometric Society, Sant Barbara.Google Scholar
Bock, R. D., Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm. Psychometrika, 46, 443459.CrossRefGoogle Scholar
Bock, R. D., Jones, L. V. (1968). The measurement and prediction of judgment and choice, San Francisco: Holden Day.Google Scholar
Bock, R. D., Lieberman, M. (1970). Fitting a response model forn dichotomously scored items. Psychometrika, 35, 283319.Google Scholar
Carroll, J. D., Chang, J. J. (1970). Analysis of individual differences in multidimensional scaling via anN-way generalization of “Eckart-Young” decomposition. Psychometrika, 35, 283319.CrossRefGoogle Scholar
Christoffersson, A. (1975). Factor analysis of dichotomized variables. Psychometrika, 40, 532.CrossRefGoogle Scholar
Coombs, C. H. (1964). A theory of data, New York: Wiley.Google Scholar
Cox, D. R. (1966). Some procedure connected with the logistic qualitative response curve. In David, F. N. (Eds.), Research papers in statistics: Festschrift for J. Neyman (pp. 5571). New York: Wiley.Google Scholar
de Leeuw, J. (1983). Models and methods for the analysis of correlation coefficients. Journal of Econometrics, 22, 113137.CrossRefGoogle Scholar
De Soete, G., Carroll, J. D. (1983). A maximum likelihood method for fitting the wandering vector model. Psychometrika, 48, 553566.CrossRefGoogle Scholar
De Soete, G., Carroll, J. D., & DeSarbo, W. S. (in press). The wandering ideal point model: A probabilistic multidimensional unfolding model for paired comparisons data. Journal of Mathematical Psychology.Google Scholar
Gifi, A. (1981). Non-linear multivariate analysis. Unpublished manuscript, University of Leiden, Department of Data Theory.Google Scholar
Greenacre, M. (1984). Theory and application of correspondence analysis, London: Academic Press.Google Scholar
Heiser, W. J. (1981). Unfolding analysis of proximity data. Unpublished doctoral Dissertation, University of Leiden.Google Scholar
Heiser, W., de Leeuw, J. (1981). Multidimensional mapping of preference data. Mathematique et Sciences Humaines, 19, 3996.Google Scholar
Johnson, N. L., Kotz, S. (1974). Distribution in Statistics: Multivariate distributions, New York: Wiley.Google Scholar
Jöreskog, K. G. (1970). A general method for analysis of covariance structures. Biometrika, 57, 239251.CrossRefGoogle Scholar
Lazarsfeld, P. F., Henry, N. (1968). Latent structure analysis, New York: Houghton Mifflin.Google Scholar
Lord, F. M., Novick, M. R. (1968). Statistical theories of mental test scores, Reading, MA: Addison Wesley.Google Scholar
Luce, R. D. (1959). Individual choice behavior: A theoretical analysis, New York: Wiley.Google Scholar
Mislevy, R. J. (in press). Recent developments in factor analysis of categorical variables. Journal of Educational Statistics.Google Scholar
Muthén, B. (1978). Contributions to factor analysis of dichotomous variables. Psychometrika, 43, 551560.CrossRefGoogle Scholar
Muthén, B. (1979). A structural probit model with latent variables. Journal of the American Statistical Association, 24, 807811.Google Scholar
Muthén, B. (1983). Latent variable structural equation modeling with categorical data. Journal of Econometrics, 22, 4365.CrossRefGoogle Scholar
Muthén, B. (1984). A general structural equation model with dichotomous, ordered categorical, and continuous latent variable indicators. Psychometrika, 49, 115132.CrossRefGoogle Scholar
Muthén, B., Christoffersson, A. (1981). Simultaneous factor analysis of dichotomous variables in several groups. Psychometrika, 46, 407419.CrossRefGoogle Scholar
Ramsay, J. O. (1982). Some statistical approaches to multidimensional scaling. Journal of the Royal Statistical Society, Series A, 145, 285312.CrossRefGoogle Scholar
Samejima, F. (1969). Estimation of latent ability using a response pattern of graded scores. Psychometrika Monograph No. 17, 34(4, Pt. 2).Google Scholar
Schönemann, P. H., Wang, M. M. (1972). An individual difference model for the multidimensional analysis of preference data. Psychometrika, 37, 275309.CrossRefGoogle Scholar
Sjoberg, L. (1967). Successive categories scaling of paired comparisons. Psychometrika, 32, 297308.CrossRefGoogle Scholar
Takane, Y. (1980). Analysis of categorizing behavior by a quantification method. Behaviormetrika, 8, 7586.CrossRefGoogle Scholar
Takane, Y. (1980). Maximum likelihood estimation in the generalized case of Thurstone's model of comparative judgment. Japanese Psychological Rsearch, 22, 188196.Google Scholar
Takane, Y. (1983a, July). Choice model analysis of the “pick any/n” type of binary data. Handout for the talk given at the European Psychometric and Classification Meeting, Jouy-en-Josas.Google Scholar
Takane, Y. (1983b, June). An item response model for multidimensional analysis of multiple-choice data. Handbook for the talk given at the Annual Meeting of the Psychometric Society, Los Angeles.Google Scholar
Takane, Y. (1985, June). Probabilistic multidimensional pair comparison models that take into account systematic individual differences. Transcript of the talk given at the 50-th Anniversary Meeting of the Psychometric Society, Nashville, TN.Google Scholar
Takane, Y., Carroll, J. D. (1981). Nonmetric maximum likelihood multidimensional scaling from directional rankings of similarities. Psychometrika, 46, 389405.CrossRefGoogle Scholar
Thissen, D. (1982). Marginal maximum likelihood estimation for the one-parameter logistic model. Psychometrika, 47, 175186.CrossRefGoogle Scholar
Thurstone, L. L. (1927). A law of comparative judgments. Psychological Review, 34, 273286.CrossRefGoogle Scholar
Thurstone, L. L. (1945). The prediction of choice. Psychometrika, 10, 237253.CrossRefGoogle ScholarPubMed
Weinberg, S. L., Carroll, J. D., Cohen, H. S. (1984). Confidence regions for INDSCAL using the jackknife and bootstrap techniques. Psychomertrika, 49, 475491.CrossRefGoogle Scholar