Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-07T19:09:49.051Z Has data issue: false hasContentIssue false

A Note on Stochastic Ordering of the Latent Trait Using the Sum of Polytomous Item Scores

Published online by Cambridge University Press:  01 January 2025

L. Andries van der Ark*
Affiliation:
Tilburg University
Wicher P. Bergsma
Affiliation:
London School of Economics
*
Requests for reprints should be sent to L. Andries van der Ark, Department of Methodology and Statistics, Faculty of Social and Behavioral Sciences, Tilburg University, 5000 LE, Tilburg, The Netherlands. E-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In contrast to dichotomous item response theory (IRT) models, most well-known polytomous IRT models do not imply stochastic ordering of the latent trait by the total test score (SOL). This has been thought to make the ordering of respondents on the latent trait using the total test score questionable and throws doubt on the justifiability of using nonparametric polytomous IRT models for ordinal measurement. We show that a broad class of polytomous IRT models has a weaker form of SOL, denoted weak SOL, and argue that weak SOL justifies ordering respondents on the latent trait using the total test score and, therefore, the use of nonparametric polytomous IRT models for ordinal measurement.

Type
Original Paper
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NC
This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
Copyright
Copyright © 2010 The Psychometric Society

References

Andrich, D. (1978). A rating formulation for ordered response categories. Psychometrika, 43, 561573.CrossRefGoogle Scholar
Birnbaum, A. (1968). Some latent trait models and their use in inferring an examinee’s ability. In Lord, F.M., & Novick, M.R. (Eds.), Statistical theories of mental test scores (pp. 395480). Reading: Addison-Wesley.Google Scholar
DeMars, C.E. (2008). Polytomous differential item functioning and violations of ordering of the expected latent trait by the raw score. Educational and Psychological Measurement, 68, 379396.CrossRefGoogle Scholar
Douglas, R., Fienberg, S.E., Lee, M.L.T., Sampson, A.R., & Whitaker, L.R. (1990). Positive dependence concepts for ordinal contingency tables. In Block, H.W., Sampson, A.R., & Savits, T.H. (Eds.), Topics in statistical dependence (pp. 189202). Hayward: Institute of Mathematical Statistics. Retrieved September 13, 2009, from http://projecteuclid.org/DPubS?verb=Display&version=1.0&service=UI&handle=euclid.lnms/1215457559&page=recordCrossRefGoogle Scholar
Grayson, D.A. (1988). Two-group classification in latent trait theory: scores with monotone likelihood ratio. Psychometrika, 53, 383392.CrossRefGoogle Scholar
Ghurye, S.G., & Wallace, D.L. (1959). A convolutive class of monotone likelihood ratio families. Annals of Mathematical Statistics, 30, 11581164.CrossRefGoogle Scholar
Hemker, B.T., Sijtsma, K., Molenaar, I.W., & Junker, B.W. (1996). Polytomous IRT models and monotone likelihood ratio of the total score. Psychometrika, 61, 679693.CrossRefGoogle Scholar
Hemker, B.T., Sijtsma, K., Molenaar, I.W., & Junker, B.W. (1997). Stochastic ordering using the latent trait and the sum score in polytomous IRT models. Psychometrika, 62, 331347.CrossRefGoogle Scholar
Hemker, B.T., Van der Ark, L.A., & Sijtsma, K. (2001). On measurement properties of continuation ratio models. Psychometrika, 66, 487506.CrossRefGoogle Scholar
Huynh, H. (1994). A new proof for monotone likelihood ratio for the sum of independent Bernoulli random variables. Psychometrika, 59, 7779.CrossRefGoogle Scholar
Junker, B.W., & Sijtsma, K. (2001). Nonparametric item response theory in action: an overview of the special issue. Applied Psychological Measurement, 25, 211220.CrossRefGoogle Scholar
Lehmann, E.L. (1959). Testing statistical hypotheses, New York: Wiley.Google Scholar
Masters, G. (1982). A Rasch model for partial credit scoring. Psychometrika, 47, 149174.CrossRefGoogle Scholar
Mokken, R.J. (1971). A theory and procedure of scale analysis, The Hague: Mouton/De Gruyter.CrossRefGoogle Scholar
Molenaar, I.W. (1997). Nonparametric models for polytomous responses. In van der Linden, W.J., & Hambleton, R.K. (Eds.), Handbook of modern item response theory (pp. 369380). New York: Springer.CrossRefGoogle Scholar
Muraki, E. (1992). A generalized partial credit model: application of an EM algorithm. Applied Psychological Measurement, 16, 159177.CrossRefGoogle Scholar
Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests, Copenhagen: Nielsen & Lydiche.Google Scholar
Samejima, F. (1969). Estimation of latent ability using a response pattern of graded scores. Psychometrika Monograph, 17.CrossRefGoogle Scholar
Scheiblechner, H. (2002). Nonparametric IRT: scoring functions and ordinal parameter estimation of isotonic probabilistic models (ISOP). Unpublished manuscript. Retrieved September 13, 2009, from http://www.staff.uni-marburg.de/~scheible/Isoscore2.pdf.Google Scholar
Scheiblechner, H. (2007). A unified nonparametric IRT model for d-dimensional psychological test data (d-ISOP). Psychometrika, 72, 4367.CrossRefGoogle Scholar
Shaked, M., & Shantikumar, J.G. (1994). Stochastic orders and their applications, San Diego: Academic Press.Google Scholar
Sijtsma, K., & Molenaar, I.W. (2002). Introduction to nonparametric item response theory, Thousand Oaks: Sage.CrossRefGoogle Scholar
Ünlü, A. (2008). A note on monotone likelihood ratio of the total score variable in unidimensional item response theory. British Journal of Mathematical and Statistical Psychology, 61, 179187.CrossRefGoogle ScholarPubMed
Van der Ark, L.A. (2001). Relationships and properties of polytomous item response theory models. Applied Psychological Measurement, 25, 273282.CrossRefGoogle Scholar
Van der Ark, L.A. (2005). Stochastic ordering of the latent trait by the sum score under various polytomous IRT models. Psychometrika, 70, 283304.CrossRefGoogle Scholar