Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-07T19:07:57.279Z Has data issue: false hasContentIssue false

A Note on Partitioned Determinants

Published online by Cambridge University Press:  01 January 2025

Jan de Leeuw*
Affiliation:
University of Leiden
*
Requests for reprints should be sent to Jan de Leeuw, Department of Data Theory FSW/RUL, Breestraat 70, 2311 CS Leiden, The Netherlands.

Abstract

A formula for the determinant of a partitioned matrix, possibly with singular submatrices, is derived and applied to some psychometric and numerical problems.

Type
Notes And Comments
Copyright
Copyright © 1982 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Reference Notes

Ouellette, D. V. Schur complements and statistics, 1978, Montreal: Department of Mathematics, McGill University.Google Scholar
Van de Geer, J. P. Varieties of the canonical solution. Unpublished paper, Department of Data Theory, University of Leiden, 1981.Google Scholar

References

Bunch, J. R., Nielsen, C. P., & Sorensen, D. C. Rank-one modification of the symmetric eigenproblem. Numerische Mathematik, 1978, 31, 3148.CrossRefGoogle Scholar
Gander, W. Least squares with a quadratic constraint. Numerische Mathematik, 1981, 36, 291307.CrossRefGoogle Scholar
Hafner, R. An improvement of the Harman-Fukuda-method for the MINRES solution in factor analysis. Psychometrika, 1981, 46, 347349.CrossRefGoogle Scholar
Golub, G. H. Some modified matrix eigenvalue problems. SIAM review, 1973, 15, 318334.CrossRefGoogle Scholar
Schur, I. Ueber Potenzreihen die im Innern des Einheitskreises beschraenkt sind. Journal fuer Reine und Angewandte Mathematik, 1917, 147, 205232.CrossRefGoogle Scholar
Ten Berge, J. M. F., & Nevels, K. A general solution to Mosier's oblique Procrustus problem. Psychometrika, 1977, 42, 593600.CrossRefGoogle Scholar