Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-08T12:23:04.078Z Has data issue: false hasContentIssue false

Modeling Within-Item Dependencies in Parallel Data on Test Responses and Brain Activation

Published online by Cambridge University Press:  01 January 2025

Minjeong Jeon*
Affiliation:
University of California, Los Angeles
Paul De Boeck
Affiliation:
Ohio State University
Jevan Luo
Affiliation:
University of California, Los Angeles
Xiangrui Li
Affiliation:
Ohio State University
Zhong-Lin Lu
Affiliation:
New York University
*
Correspondence should be made to Minjeong Jeon, Department of Education, University of California, Los Angeles, 3141 Moore Hall, 457 Portola Avenue, Los Angeles, CA 90024, USA. Email: [email protected]

Abstract

In this paper, we propose a joint modeling approach to analyze dependency in parallel response data. We define two types of dependency: higher-level dependency and within-item conditional dependency. While higher-level dependency can be estimated with common latent variable modeling approaches, within-item conditional dependency is a unique kind of information that is often not captured with extant methods, despite its potential to shed new insights into the relationship between the two types of response data. We differentiate three ways of modeling within-item conditional dependency by conditioning on raw values, expected values, or residual values of the response data, which have different implications in terms of response processes. The proposed approach is illustrated with the example of analyzing parallel data on response accuracy and brain activations from a Theory of Mind assessment. The consequence of ignoring within-item conditional dependency is investigated with empirical and simulation studies in comparison to conventional dependency analysis that focuses exclusively on relationships between latent variables.

Type
Original Paper
Copyright
Copyright © 2021 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Electronic Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s11336-020-09741-2.

The authors are grateful to the Editor, the Associate Editor, and the anonymous reviewers for their constructive comments on our manuscript.

References

Ahmed, F., &Miller, L.(2011).Executive function mechanisms of theory of mind.Journal of Autism and Developmental Disorders,41,667678.CrossRefGoogle ScholarPubMed
Amodio, D., &Frith, C.(2006).Meeting of minds: The medial frontal cortex and social cognition.Nature Reviews in Neuroscience,7,268277.CrossRefGoogle ScholarPubMed
Anderson, J.,Carter, C.,Fincham, J.,Qin, Y., &Rosenberg-Lee, M.(2008).Using fMRI to test models of complex cognition.Cognitive Science,32,13231348.CrossRefGoogle ScholarPubMed
Asar, O.,Ritchie, J.,Kalra, P., &Diggle, P.(2015).Joint modelling of repeated measurement and time-to-event data: An introductory tutorial.International Journal of Epidemiology,1,334344.CrossRefGoogle Scholar
Baron-Cohen, S.,Leslie, AM., &Frith, U.(1985).Does the autistic child have a “theory of mind”?.Cognition,21,3746.CrossRefGoogle ScholarPubMed
Blair, C., &Razza, R. P.(2007).Relating effortful control, executive function, and false belief understanding to emerging math and literacy ability in kindergarten.Child Development,78,647666.CrossRefGoogle ScholarPubMed
Bolsinova, M., De Boeck, P., & Tijmstra, J. (2017). Modelling conditional dependence between response time and accuracy. Psychometrika, 82, 1126–1148CrossRefGoogle Scholar
Bolsinova, M., &Molenaar, D.(2018).Modeling nonlinear conditional dependence between response time and accuracy.Frontiers in Psychology,9,1525CrossRefGoogle ScholarPubMed
Bowler, D. M.(1992).Theory of mind in Asperger’s syndrome.Journal of Child Psychology and Psychiatry,33,877893.CrossRefGoogle ScholarPubMed
Bradford, E.,Jentzsch, I., &Gomez, J. C.(2015).From self to social cognition: Theory of Mind mechanisms and their relation to executive functioning.Cognition,138,2134.CrossRefGoogle ScholarPubMed
Brunner, J.,Olsen, A.,Aasen, I.,Loehaugen, G.,Haberg, A., &Kropotov, J.(2015).Neuropsychological parameters indexing executive processes are associated with independent components of ERPs.Neuropsychologia,66,144156.CrossRefGoogle ScholarPubMed
Carlson, S., &Moses, L.(2001).Individual differences in inhibitory control and children’s theory of mind.Child Development,72,10321053.CrossRefGoogle ScholarPubMed
Chalmers, R. P.(2012).mirt: A multidimensional item response theory package for the R environment.Journal of Statistical Software,48,129.CrossRefGoogle Scholar
De Boeck, P.,Chen, H., &Davison, M.(2017).Spontaneous and imposed speed of cognitive test responses.British Journal of Mathematical and Statistical Psychology,70,225237.CrossRefGoogle ScholarPubMed
De Boeck, P., &Jeon, M.(2019).An overview of models for response times and processes in cognitive tests.Frontiers in Psychology,10,102CrossRefGoogle ScholarPubMed
DeCarlo, L. T.(2019).An item response model for true-false exams based on signal detection theory.Applied Psychological Methods,44,234248.Google ScholarPubMed
Dodell-Feder, D.,Koster-Hale, J.,Bedny, M., &Saxe, R.(2011).fMRI item analysis in a theory of mind task.Neuroimage,55,705712.CrossRefGoogle Scholar
Dohnel, K.,Schuwerk, T.,Meinhardt, J.,Sodian, B.,Hajak, G., &Sommer, M.(2012).Functional activity of the right temporo-parietal junction and of the medial prefrontal cortex associated with true and false belief reasoning.NeuroImage,60,16521661.CrossRefGoogle ScholarPubMed
Dolan, R.(2008).Neuroimaging of cognition: Past, present and future.Neuron,60,496502.2699840CrossRefGoogle ScholarPubMed
Ferrando, P. J., &Lorenzo-Seva, U.(2007).An item-response model incorporating response time data in binary personality items.Applied Psychological Measurement,31,525543.CrossRefGoogle Scholar
Forstmann, B.,Anwander, A.,Schafer, A.,Neumann, J.,Brown, S.,Wagenmakers, E., &Turner, R.(2010).Cortico-striatal connections predict control over speed and accuracy in perceptual decision making.Proceedings of the National Academy of Sciences,107,1591615920.CrossRefGoogle ScholarPubMed
Forstmann, B.,Dutilh, G.,Brown, S.,Neumann, J.,von Cramon, D.,Ridderinkhof, K., &Wagenmakers, E.(2008).Striatum and pre-SMA facilitate decision-making under time pressure.Proceedings of the National Academy of Sciences,105,1753817542.CrossRefGoogle Scholar
Forstmann, B.,Tittgemeyer, M.,Wagenmakers, E. J.,Derrfuss, J.,Imperati, D., &Brown, S.(2011).The speed-accuracy tradeoff in the elderly brain: A structural model-based approach.Journal of Neuroscience,31,1724217249.CrossRefGoogle Scholar
Gelman, A.(2013).Two simple examples for understanding posterior p-values whose distributions are far from uniform.Electronic Journal of Statistics,7,25952602.CrossRefGoogle Scholar
Gelman, A.,Meng, X. L., &Stern, H.(1996).Posterior predictive assessment of model fitness via realized discrepancies.Statistica Sinica,6,733807.Google Scholar
Glascher, J., &O’Doherty, (2010).Model-based approaches to neuroimaging: Combining reinforcement learning theory with fMRI data.Wires Cognitive Science,1,501510.CrossRefGoogle ScholarPubMed
Green, D. M., &Swets, J. A.(1988).Signal detection theory and psychophysics,Los Altos, CA:Peninsula.Google Scholar
Hamilton, A.(2009).Goals, intentions and mental states: Challenges for theories of autism.Journal of Child Psychology and Psychiatry,50,881892.CrossRefGoogle ScholarPubMed
Heck, D. W., Erdfelder, E., & Kieslich, P. J. (2018). Generalized processing tree models: Jointly modeling discrete and continuous variables. Psychometrika, 83, 893–918CrossRefGoogle Scholar
Jacoby, N., &Fedorenko, E.(2020).Discourse-level comprehension engages medial frontal theory of mind brain regions even for expository texts.Language, Cognition and Neuroscience,35,780796.CrossRefGoogle ScholarPubMed
Jeon, M.,Rijmen, F., &Rabe-Hesketh, S.(2013).Modeling differential item functioning using a generalization of the multiple-group bifactor model.Journal of Educational and Behavioral Statistics,38,3260.CrossRefGoogle Scholar
Jongen, E.,Smulders, F., &Van Breukelen, G.(2006).Varieties of attention in neutral trials: linking RT to ERPs and EEG frequencies.Psychophysiology,43,113125.CrossRefGoogle ScholarPubMed
Kerr, N.,Dunbar, R., &Bentall, R.(2003).Theory of mind deficits in bipolar affective disorder.Journal of Affect Disorders,73,253259.CrossRefGoogle ScholarPubMed
Klauer, K. C., &Kellen, D.(2018).RT-MPTs: Process models for response-time distributions based on multinomial processing trees with applications to recognition memory.Journal of Mathematical Psychology,82,111130.CrossRefGoogle Scholar
Kriegeskorte, N.,Simmons, W.,Bellgowan, P., &Baker, C.(2009).Circular analysis in systems neuroscience—The dangers of double dipping.Nature Neuroscience,12,535540.2841687CrossRefGoogle ScholarPubMed
Liu, D.,Meltzoff, A., &Wellman, H.(2009).Neural correlates of belief- and desire-reasoning.Child Development,80,11631171.CrossRefGoogle ScholarPubMed
Meinhardt, J.,Sodian, B.,Thoermer, C.,Doehnel, K., &Sommer, M.(2011).True- and false-belief reasoning in children and adults: An event-related potential study of theory of mind.Developmental Cognitive Neuroscience,1,6776.CrossRefGoogle ScholarPubMed
Millsap, H., &Everson, R. E.(1991).Confirmatory measurement model comparisons using latent means.Multivariate Behavioral Research,26,479497.CrossRefGoogle ScholarPubMed
Mitchell, J.(2008).Activity in right temporo-parietal junction is not selective for theory-of-mind.Cerebral Cortex,18,262271.CrossRefGoogle Scholar
Mitchell, J.,Banaji, M., &Macrae, C.(2005).The link between social cognition and self-referential thought in the medial prefrontal cortex.Journal of Cognitive Neuroscience,17,13061315.CrossRefGoogle ScholarPubMed
Mizrahi, R.,Korostil, M.,Starkstein, S.,Zipurski, R., &Kapur, S.(2006).The effect of antipsychotic treatment on theory on mind.Psychological Medicine,37,595601.CrossRefGoogle ScholarPubMed
Molenaar, D., &De Boeck, P.(2018).Response mixture modeling: Accounting for heterogeneity in item characteristics across response times.Psychometrika,83,279297.CrossRefGoogle ScholarPubMed
Moustaki, I., &Knott, M.(2000).Generalized latent trait models.Psychometrika,65,391411.CrossRefGoogle Scholar
Muthén, L., &Muthén, B.(2008).Mplus user’s guide,Angeles, CA:Muthen & Muthen.Google Scholar
Plummer, M. (2015). JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. In Proceedings of the 3rd international workshop on distributed statistical computing (DSC 2003) (pp. 20.22) [Computer software manual].Google Scholar
Premack, D., &Woodruff, G.(1978).Does the chimpanzee have a theory of mind?.Behavioural and Brain Sciences,1,515526.CrossRefGoogle Scholar
Proust-Lima, C.,Sene, M.,Taylor, J., &Jacqmin-Gadda, H.(2014).Joint latent class models for longitudinal and time-to-event data: A review.Statistical Methods in Medical Research,23,7490.CrossRefGoogle ScholarPubMed
Rabe-Hesketh, S.,Skrondal, A., &Pickles, A.(2004).Generalized multilevel structural equation modelling.Psychometrika,69,167190.CrossRefGoogle Scholar
Rosseel, Y.(2012).lavaan: An R package for structural equation modeling.Journal of Statistical Software,48,136.CrossRefGoogle Scholar
Saxe, R.(2009).The neural evidence for simulation is weaker than i think you think it is.Philosophical Studies,144,447456.CrossRefGoogle Scholar
Saxe, R.Leslie, A., &German, T.(2010).The right temporo-parietal junction: A specific brain region for thinking about thoughts.Handbook of theory of mind,Hillsdale, NJ:Erlbaum.Google Scholar
Schneider, D.,Slaughter, V. P.,Bayliss, A. P., &Dux, P. E.(2013).A temporally sustained implicit theory of mind deficit in autism spectrum disorders.Cognition,129,410417.CrossRefGoogle ScholarPubMed
Shryane, N.,Corcoran, R.,Rowse, G.,Moore, R.,Cummins, S., &Blackwood, N.(2008).Deception and false belief in paranoia: Modelling theory of mind stories.Cognitive Neuropsychiatry,13,832.CrossRefGoogle ScholarPubMed
Skrondal, A., &Rabe-Hesketh, S.(2004).Generalized latent variable modeling: Multilevel, longitudinal, and structural equation models,Boca Raton, FL:Chapman & Hall/CRC.CrossRefGoogle Scholar
Spiegelhalter, D. J.,Best, N. G.,Carlin, B. P., &van der Linde, A.(2002).Bayesian measures of model complexity and fit (with discussion).Journal of the Royal Statistical Society Series B,64,583640.CrossRefGoogle Scholar
Spiegelhalter, D. J., Thomas, A., Best, N. G., & Gilks, W. R. (1995). BUGS: Bayesian inference using Gibbs sampling, Version 0.50. Cambridge: MRC Biostatistics Unit [Computer software manual].Google Scholar
Stan Development Team. (2015). Stan modeling language users guide and reference manual. Version 2(9) [Computer software manual].Google Scholar
Taylor, B. K.,Gavin, W. J.,Grimm, K. J.,Passantino, D. E., &Davies, P. L.(2018).Modeling the interrelationships between brain activity and trait attention measures to predict individual differences in reaction times in children during a Go/No-Go task.Neuropsychologia,109,222231.CrossRefGoogle ScholarPubMed
Thomas, A., Hara, B. O., Ligges, U., & Sturtz, S. (2006). Making BUGS open. R News, 6, 12.17. [Computer software manual].Google Scholar
Turner, B.,Forstmann, B.,Wagenmakers, E.,Brown, S.,Sederberg, P., &Steyvers, M.(2013).A Bayesian framework for simultaneouslymodeling neural and behavioral data.NeuroImage,72,193206.CrossRefGoogle ScholarPubMed
Turner, B.,Rodriguez, C. A.,Norcia, T.,Steyvers, M., &McClure, S. M.(2016).Why more is better: A method for simultaneously modeling EEG, fMRI, and behavior.NeuroImage,128,96115.CrossRefGoogle Scholar
van der Linden, W. J.(2007).A hierarchical framework for modeling speed and accuracy on test items.Psychometrika,72,287308.CrossRefGoogle Scholar
van der Linden, W. J.(2009).Conceptual issues in response-time modeling.Journal of Educational Measurement,46,247272.CrossRefGoogle Scholar
van der Linden, W. J., & Glas, C. A. W. (2010). Statistical tests of conditional independence between responses and/or response times on test items. Psychometrika, 75, 120–139.CrossRefGoogle Scholar
van der Maas, H.,Molenaar, D.,Maris, G.,Kievit, R., &Borsboom, D.(2011).Cognitive psychology meets psychometric theory: On the relation between process models for decision making and latent variable models for individual difference.Psychological Review,118,339356.CrossRefGoogle Scholar
Young, L.,Dodell-Feder, D., &Saxe, R.(2010).What gets the attention of the temporo-parietal junction? An fMRI investigation of attention and theory of mind.Neuropsychologia,48,26582664.CrossRefGoogle ScholarPubMed
Supplementary material: File

Jeon et al. supplementary material

Jeon et al. supplementary material
Download Jeon et al. supplementary material(File)
File 983.3 KB