Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-07T19:37:19.520Z Has data issue: false hasContentIssue false

Minimum Rank and Minimum Trace of Covariance Matrices

Published online by Cambridge University Press:  01 January 2025

Giacomo Della Riccia*
Affiliation:
Ben-Gurion University of the Negev
Alexander Shapiro
Affiliation:
Ben-Gurion University of the Negev
*
Requests for reprints should be sent to Giacomo Della Riccia, University of Udine, Faculty of Sciences, 33100-Udine, Italy.

Abstract

This paper considers some mathematical aspects of minimum trace factor analysis (MTFA). The uniqueness of an optimal point of MTFA is proved and necessary and sufficient conditions for a point x to be optimal are established. Finally, some results about the connection between MTFA and the classical minimum rank factor analysis will be presented.

Type
Original Paper
Copyright
Copyright © 1982 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bellman, R. Introduction to matrix analysis, 1960, New York: McGraw-Hill.Google Scholar
Bentler, P. M. A lower-bound method for the dimension-free measurement of internal consistency. Social Science Research, 1972, 1, 343357.CrossRefGoogle Scholar
Bentler, P. M. & Woodward, J. A. Inequalities among lower-bounds to reliability with applications to test construction and factor analysis. Psychometrika, 1980, 45, 249267.CrossRefGoogle Scholar
Della Riccia, G. Optimal communality values in factor analysis. Proceedings of IEEE International Symposium on Information Theory. Ashkelon, Israel, 1973.Google Scholar
Della Riccia, G., de Santis, F., & Sessa, M. Optimal factor analysis and pattern recognition. Applications. Proceedings of International Conference on Cybernetics and Society. Tokyo-Kyoto, Japan, 1978.Google Scholar
Della Riccia, G. Optimal factor analysis techniques in statistical pattern recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1980, 2, 6061.Google Scholar
Hakim, M., Lochard, E. O., Olivier, J. P., & Térouanne, E. Sur les traces de Spearman (I). Cahiers du Bureau Universitaire de Recherche Opérationnelle, 1976, Paris: Université Pierre et Marie Curie.Google Scholar
Ioffe, A. D., & Tihomirov, V. M. Theory of extremal problems, 1979, New York: North-Holland Publishing Company.Google Scholar
Jackson, P. H. & Agunwamba, C. C. Lower bounds for the reliability of the total score on a test composed of non-homogeneous items: I, Algebraic lower bounds. Psychometrika, 1977, 42, 567578.CrossRefGoogle Scholar
Lederman, W. On a problem concerning matrices with variable diagonal elements. Proceedings of the Royal Society of Edinburgh, 1939, 60, 117.CrossRefGoogle Scholar
Rockafellar, R. T. Convex Analysis, 1970, Princeton, N.J.: Princeton University Press.CrossRefGoogle Scholar
Ten Berge, J. M. F., Snijders, T. A. B., & Zegers, F. E. Computational aspects of the greatest lower bound to the reliability and constrained minimum trace factor analysis. Psychometrika, 1981, 46, 201213.CrossRefGoogle Scholar