Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-06T02:44:41.008Z Has data issue: false hasContentIssue false

Lord–Wingersky Algorithm Version 2.0 for Hierarchical Item Factor Models with Applications in Test Scoring, Scale Alignment, and Model Fit Testing

Published online by Cambridge University Press:  01 January 2025

Li Cai*
Affiliation:
University of California
*
Correspondence should be sent to Li Cai, CRESST, University of California, Los Angeles, CA 90095-1521, USA. E-mail: [email protected]

Abstract

Lord and Wingersky’s (Appl Psychol Meas 8:453–461, 1984) recursive algorithm for creating summed score based likelihoods and posteriors has a proven track record in unidimensional item response theory (IRT) applications. Extending the recursive algorithm to handle multidimensionality is relatively simple, especially with fixed quadrature because the recursions can be defined on a grid formed by direct products of quadrature points. However, the increase in computational burden remains exponential in the number of dimensions, making the implementation of the recursive algorithm cumbersome for truly high-dimensional models. In this paper, a dimension reduction method that is specific to the Lord–Wingersky recursions is developed. This method can take advantage of the restrictions implied by hierarchical item factor models, e.g., the bifactor model, the testlet model, or the two-tier model, such that a version of the Lord–Wingersky recursive algorithm can operate on a dramatically reduced set of quadrature points. For instance, in a bifactor model, the dimension of integration is always equal to 2, regardless of the number of factors. The new algorithm not only provides an effective mechanism to produce summed score to IRT scaled score translation tables properly adjusted for residual dependence, but leads to new applications in test scoring, linking, and model fit checking as well. Simulated and empirical examples are used to illustrate the new applications.

Type
Original Paper
Copyright
Copyright © 2014 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bock, R.D., Gibbons, R., & Muraki, E. (1988). Full-information item factor analysis. Applied Psychological Measurement, 12, 261280.CrossRefGoogle Scholar
Cai, L. (2010). High-dimensional exploratory item factor analysis by a Metropolis–Hastings Robbins–Monro algorithm. Psychometrika, 75, 3357.CrossRefGoogle Scholar
Cai, L. (2010). A two-tier full-information item factor analysis model with applications. Psychometrika, 75, 581612.CrossRefGoogle Scholar
Cai, L. (2013). flexMIRT Version 2.0: Flexible multilevel item analysis and test scoring (Computer software). Chapel Hill, NC: Vector Psychometric Group LLC.Google Scholar
Cai, L., Thissen, D., & du Toit, S.H.C. (2011). IRTPRO: Flexible, multidimensional, multiple categorical IRT modeling (Computer software). Chicago, IL: Scientific Software International.Google Scholar
Cai, L., Yang, J.S., & Hansen, M. (2011). Generalized full-information item bifactor analysis. Psychological Methods, 16, 221248.CrossRefGoogle ScholarPubMed
Chen, W.H., & Thissen, D. (1999). Estimation of item parameters for the three-parameter logistic model using the marginal likelihood of summed scores. British Journal of Mathematical and Statistical Psychology, 52, 1937.CrossRefGoogle Scholar
Edwards, M.C. (2010). A Markov chain Monte Carlo approach to confirmatory item factor analysis. Psychometrika, 75, 474497.CrossRefGoogle Scholar
Ferrando, P.J., & Lorenzo-seva, U. (2001). Checking the appropriateness of item response theory models by predicting the distribution of observed scores: The program EO-fit. Educational and Psychological Measurement, 61, 895902.CrossRefGoogle Scholar
Gibbons, R.D., & Hedeker, D. (1992). Full-information item bifactor analysis. Psychometrika, 57, 423436.CrossRefGoogle Scholar
Gibbons, R.D., Bock, R.D., Hedeker, D., Weiss, D.J., Segawa, E., & Bhaumik, D.K. et al. (2007). Full-information item bifactor analysis of graded response data. Applied Psychological Measurement, 31, 419.CrossRefGoogle Scholar
Glas, C.A.W., Wainer, H., & Bradlow, E.T. (2000). Maximum marginal likelihood and expected a posteriori estimation in testlet-based adaptive testing. In van der Linden, W.J., & Glas, C.A.W. (Eds.), Computerized adaptive testing: Theory and practice (pp. 271288). Boston, MA: Kluwer.CrossRefGoogle Scholar
Hambleton, R.K., & Traub, R.E. (1973). Analysis of empirical data using two logistic latent trait models. British Journal of Mathematical and Statistical Psychology, 26, 195211.CrossRefGoogle Scholar
Holzinger, K.J., & Swineford, F. (1937). The bi-factor method. Psychometrika, 2, 4154.CrossRefGoogle Scholar
Ip, E.H. (2010). Empirically indistinguishable multidimensional IRT and locally dependent unidimensional item response models. British Journal of Mathematical and Statistical Psychology, 63, 395416.CrossRefGoogle ScholarPubMed
Ip, E.H. (2010). Interpretation of the three-parameter testlet response model and information function. Applied Psychological Measurement, 34, 467482.CrossRefGoogle Scholar
Jeon, M., Rijmen, F., & Rabe-Hesketh, S. (2013). Modeling differential item functioning using a generalization of the multiple-group bifactor model. Journal of Educational and Behavioral Statistics, 38, 3260.CrossRefGoogle Scholar
Li, Y., & Rupp, A.A. Performance of the S-X2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S-X^{2}$$\end{document} statistic for full-information bifactor models (2011). Educational and Psychological Measurement. 71, 9861005.CrossRefGoogle Scholar
Li, Y., Bolt, D.M., & Fu, J. (2006). A comparison of alternative models for testlets. Applied Psychological Measurement, 30, 321.CrossRefGoogle Scholar
Li, Z. & Cai, L. (2012). Summed score based fit indices for testing latent variable distribution assumption in IRT. Paper presented at the 2012 International Meeting of the Psychometric Society, Lincoln, NE.Google Scholar
Lord, F.M. (1953). The relation of test score to the latent trait underlying the test. Educational and Psychological Measurement, 13, 517548.CrossRefGoogle Scholar
Lord, F.M., & Wingersky, M.S. (1984). Comparison of IRT true-score and equipercentile observed-score “equatings”. Applied Psychological Measurement, 8, 453461.CrossRefGoogle Scholar
Muraki, E. (1992). A generalized partial credit model: Application of an EM algorithm. Applied Psychological Measurement, 16, 159176.CrossRefGoogle Scholar
Orlando, M., & Thissen, D. (2000). New item fit indices for dichotomous item response theory models. Applied Psychological Measurement, 24, 5064.CrossRefGoogle Scholar
Orlando, M., Sherbourne, C.D., & Thissen, D. (2000). Summed-score linking using item response theory: Application to depression measurement. Psychological Assessment, 12, 354359.CrossRefGoogle ScholarPubMed
Reckase, M.D. (2009). Multidimentional item response theory. New York, NY: Springer.CrossRefGoogle Scholar
Reeve, B.B., Hays, R.D., Bjorner, J.B., Cook, K.F., Crane, P.K., & Teresi, J.A. et al. (2007). Psychometric evaluation and calibration of health-related quality of life items banks: Plans for the patient-reported outcome measurement information system (PROMIS). Medical Care, 45, 2231.CrossRefGoogle Scholar
Reise, S.P. (2012). The rediscovery of bifactor measurement models. Multivariate Behavioral Research, 47, 667696.CrossRefGoogle ScholarPubMed
Rijmen, F. (2009). Efficient full information maximum likelihood estimation for multidimensional IRT models (Tech. Rep. No. RR-09-03). Educational Testing Service.Google Scholar
Rijmen, F. (2010). Formal relations and an empirical comparison between the bi-factor, the testlet, and a second-order multidimensional IRT model. Journal of Educational Measurement, 47, 361372.CrossRefGoogle Scholar
Rijmen, F., Vansteelandt, K., & De Boeck, P. (2008). Latent class models for diary method data: Parameter estimation by local computations. Psychometrika, 73, 167182.CrossRefGoogle ScholarPubMed
Rosa, K., Swygert, K.A., Nelson, L., & Thissen, D. (2001). Item response theory applied to combinations of multiple-choice and constructed-response items—scale scores for patterns of summed scores. In Thissen, D., & Wainer, H. (Eds.), Test scoring (pp. 253292). Mahwah, NJ: Lawrence Erlbaum.Google Scholar
Ross, J. (1966). An empirical study of a logistic mental test model. Psychometrika, 31, 325340.CrossRefGoogle ScholarPubMed
Samejima, F. (1969). Estimation of latent ability using a response pattern of graded scores (Psychometric Monographs No. 17). Richmond, VA: Psychometric Society.Google Scholar
Schilling, S., & Bock, R.D. (2005). High-dimensional maximum marginal likelihood item factor analysis by adaptive quadrature. Psychometrika, 70, 533555.Google Scholar
Schmid, J., & Leiman, J.M. (1957). The development of hierarchical factor solutions. Psychometrika, 22, 5361.CrossRefGoogle Scholar
Sinharay, S., Johnson, M.S., & Stern, H.S. (2006). Posterior predictive assessment of item response theory models. Applied Psychological Measurement, 30, 298321.CrossRefGoogle Scholar
Stucky, B.D., Thissen, D., & Edelen, M.O. (2013). Using logistic approximations of marginal trace lines to develop short assessments. Applied Psychological Measurement, 37, 4157.CrossRefGoogle Scholar
Thissen, D., & Wainer, H. (Eds.) (2001). Test scoring. Mahwah, NJ: Lawrence Erlbaum.CrossRefGoogle Scholar
Thissen, D., Pommerich, M., Billeaud, K., & Williams, V.S.L. (1995). Item response theory for scores on tests including polytomous items with ordered responses. Applied Psychological Measurement, 19, 3949.CrossRefGoogle Scholar
Thissen, D., Varni, J.W., Stucky, B.D., Liu, Y., Irwin, D.E., & DeWalt, D.A. (2011). Using the PedsQL™ 3.0 asthma module to obtain scores comparable with those of the PROMIS pediatric asthma impact scale (PAIS). Quality of Life Research, 20, 14971505.CrossRefGoogle ScholarPubMed
Wainer, H., Bradlow, E.T., & Wang, X. (2007). Testlet response theory and its applications. New York, NY: Cambridge University Press.CrossRefGoogle Scholar
Wirth, R.J., & Edwards, M.C. (2007). Item factor analysis: Current approaches and future directions. Psychological Methods, 12, 5879.CrossRefGoogle ScholarPubMed
Wu, E.J.C., & Bentler, P.M. (2011). EQSIRT: A user-friendly IRT program (Computer software). Encino, CA: Multivariate Software.Google Scholar
Yung, Y.F., McLeod, L.D., & Thissen, D. (1999). On the relationship between the higher-order factor model and the hierarchical factor model. Psychometrika, 64, 113128.CrossRefGoogle Scholar