Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-07T18:37:34.088Z Has data issue: false hasContentIssue false

Least-Squares Theory Based on General Distributional Assumptions with an Application to the Incomplete Observations Problem

Published online by Cambridge University Press:  01 January 2025

B. M. S. Van Praag*
Affiliation:
Econometric Institute, Erasmus University, Rotterdam
T. K. Dijkstra
Affiliation:
University of Groningen
J. Van Velzen
Affiliation:
IBM, The Netherlands
*
Requests for reprints should be sent to B. M. S. Van Praag, Erasmus University, Econometric Institute, P.O. Box 1738, 3000 DR Rotterdam, THE NETHERLANDS.

Abstract

The linear regression model y=β′x+ ε is reanalyzed. Taking the modest position that β′x is an approximation of the “best” predictor of y we derive the asymptotic distribution of b and R2, under mild assumptions.

The method of derivation yields an easy answer to the estimation of β from a data set which contains incomplete observations, where the incompleteness is random.

Type
Original Paper
Copyright
Copyright © 1985 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balestra, P. (1976). La Derivation Matricielle [Matrix Differentiations], Paris: Sirey.Google Scholar
Bentler, P. M. (1983). Simultaneous equation systems as moment structure models: With an introduction to latent variable models. Journal of Econometrics, 22, 1342.CrossRefGoogle Scholar
Bentler, P. M., & Dijkstra, T. K. (in press). Efficient estimation via linearization in structural models. In Krishnaiak, P. R. (Ed.), Multivariate Analysis VI. Amsterdam: North-Holland.Google Scholar
Bishop, Y., Fienberg, S., Holland, P. (1975). Discrete Multivariate Analysis, Theory and Practice, Cambridge: The M.I.T. Press.Google Scholar
Browne, M. W. (1982). Covariance structures. In Hawkins, D. M. (Eds.), Topics in Applied Multivariate Analysis, Cambridge: University Press.Google Scholar
Crámer, H. (1946). Mathematical Methods of Statistics, Princeton: University Press.Google Scholar
de Leeuw, J. (1983). Models and methods for the analysis of correlation coefficients. Journal of Econometrics, 22, 113138.CrossRefGoogle Scholar
Dhrymes, P. J. (1978). Introductory Econometrics, New York: Springer-Verlag.CrossRefGoogle Scholar
Dijkstra, T. K. (1981). Latent Variables in Linear Stochastic Models, Groningen: Groningen University.Google Scholar
Dijkstra, T. K. (1983). Some comments on maximum likelihood and partial least squares methods. Journal of Econometrics, 22, 6790.CrossRefGoogle Scholar
Freedman, D. A. (1981). Bootstrapping regression models. The Annals of Statistics, 9(6), 12181228.CrossRefGoogle Scholar
Graham, A. (1981). Kronecker Products and Matrix Calculus with Applications, Chichester, England: Ellis Horwood.Google Scholar
Haitovsky, J. (1968). Missing Data in Regression Analysis. Journal of the Royal Statistical Society, 30, 6782.CrossRefGoogle Scholar
Hocking, R. R. (1979). The design and analysis of sample surveys with incomplete data: Reduction of respondent burden. In Madow, W. C. (Ed.), Preliminary Proceedings of the Symposium on Incomplete Data (pp. 135164). U.S. Department of Health, Education and Welfare, Social Security Administration.Google Scholar
Hsu, P. L. (1949). The limiting distribution of functions of sample means and application to testing hypotheses. In Neyman, J. (Eds.), Proceedings First Berkeley Symposium in Mathematics, Statistics and Probability (pp. 359402). Berkeley, CA: University Press of California.Google Scholar
Isserlis, L. (1916). On certain probable errors and correlation coefficients of multiple frequency distributions with skew regression. Biometrika, 11, 185190.CrossRefGoogle Scholar
Kagan, A. M., Linnik, Y. U. V., & Rao, C. R. (1973). Characterization Problems in Mathematical Statistics, New York: John Wiley.Google Scholar
Little, R. J. A. (1982). Models for non-response in sample surveys. Journal of the American Statistical Association, 77, 237250.CrossRefGoogle Scholar
Muirhead, R. J. (1980). The effects of elliptical distribution on some standard procedures involving correlation coefficients. In Gupta, R. P. (Eds.), Multivariate Statistical Analysis, Amsterdam: North-Holland.Google Scholar
Rao, C. R. (1973). Linear Statistical Inference and its Applications, New York: John Wiley.CrossRefGoogle Scholar
Steiger, J. H., & Browne, M. W. (in press). The comparison of interdependent correlations between optimal linear composites. Biometrika.Google Scholar
Steiger, J. H., & Hakstian, A. R. (1982). The asymptotic distribution of elements of a correlation matrix: Theory and application. British Journal of Mathematical and Statistical Psychology, 35, 208215.CrossRefGoogle Scholar
Van de Stadt, H. (1981). The evaluation of income and leisure: An analysis of labor supply based on individual preferences (Report No. 81.13), Leyden: Leyden University, Center for Research in Public Economics.Google Scholar
Van Praag, B. M. S. (1978). The multivariate approach in linear regression theory. In Corsten, L. C. A., & Hermans, J. (Eds.), Compstat, Proceedings in Computational Statistics (pp. 102109). Wien: Physica-Verlag.Google Scholar
Van Praag, B. M. S., Goedhart, T., & Kapteyn, A. (1980). The poverty line—A pilot survey in Europe. The Review of Economics and Statistics, 62(3), 461465.CrossRefGoogle Scholar
Van Praag, B. M. S. (1981). Model-free regression. Economics Letters, 7, 139144.CrossRefGoogle Scholar
Van Praag, B. M. S., & Van Velzen, J. (1982). Incomplete data: A model-free Approach, Leyden: Leyden University, Center for Research in Public Economics.Google Scholar
Van Praag, B. M. S., & Wesselman, A. M. (1984). The Hot-Deck Method: An analytical and empirical evaluation. Computational Statistics Quarterly, 1(3), 205231.Google Scholar
White, H. (1982). Maximum Likelihood Estimation of Misspecified Models. Econometrica, 50, 125.CrossRefGoogle Scholar