Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-08T12:25:38.998Z Has data issue: false hasContentIssue false

L. Hubert, P. Arabie, & J. Meulman (2006). The structural representation of proximity matrices with MATLAB. Philadelphia: SIAM. xvi+214 pp. US$79.00. ISBN 0898716071.

Review products

L. Hubert, P. Arabie, & J. Meulman (2006). The structural representation of proximity matrices with MATLAB. Philadelphia: SIAM. xvi+214 pp. US$79.00. ISBN 0898716071.

Published online by Cambridge University Press:  01 January 2025

Michael Brusco*
Affiliation:
Florida State University

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Book Review
Copyright
Copyright © 2007 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Defays, D. (1978). A short note on a method of seriation. British Journal of Mathematical and Statistical Psychology, 31, 4953.CrossRefGoogle Scholar
Dykstra, R.L. (1983). An algorithm for restricted least squares regression. Journal of the American Statistical Association, 78, 837842.CrossRefGoogle Scholar
Hubert, L.J., Arabie, P. (1994). The analysis of proximity matrices through sums of matrices having (anti-) Robinson forms. British Journal of Mathematical and Statistical Psychology, 47, 140.CrossRefGoogle Scholar
Hubert, L.J., Arabie, P. (1995). The approximation of two-mode proximity matrices by sums or order-constrained matrices. Psychometrika, 60, 573605.CrossRefGoogle Scholar
Hubert, L.J., Arabie, P. (1995). Iterative projection strategies for the least-squares fitting of tree structures to proximity data. British Journal of Mathematical and Statistical Psychology, 48, 281317.CrossRefGoogle Scholar
Hubert, L.J., Arabie, P., Meulman, J. (1997). Linear and circular unidimensional scaling for symmetric proximity matrices. British Journal of Mathematical and Statistical Psychology, 50, 253284.CrossRefGoogle Scholar
Hubert, L.J., Arabie, P., Meulman, J. (1998). Graph-theoretic representations for proximity matrices through strongly anti-Robinson or circular strongly anti-Robinson matrices. Psychometrika, 63, 341358.CrossRefGoogle Scholar
Hubert, L.J., Arabie, P., Meulman, J. (2002). Linear unidimensional scaling in the L 2-norm: Basic optimization methods using MATLAB. Journal of Classification, 19, 303328.CrossRefGoogle Scholar
Robinson, W.S. (1951). A method for chronologically ordering archaeological deposits. American Antiquity, 16, 293301.CrossRefGoogle Scholar