Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-07T17:51:16.607Z Has data issue: false hasContentIssue false

Information Matrices and Standard Errors for MLEs of Item Parameters in IRT

Published online by Cambridge University Press:  01 January 2025

Ke-Hai Yuan*
Affiliation:
University of Notre Dame
Ying Cheng
Affiliation:
University of Notre Dame
Jeff Patton
Affiliation:
University of Notre Dame
*
Requests for reprints should be sent to Ke-Hai Yuan, University of Notre Dame, Notre Dame, IN 46556, USA. E-mail: [email protected]

Abstract

The paper clarifies the relationship among several information matrices for the maximum likelihood estimates (MLEs) of item parameters. It shows that the process of calculating the observed information matrix also generates a related matrix that is the middle piece of a sandwich-type covariance matrix. Monte Carlo results indicate that standard errors (SEs) based on the observed information matrix are robust to many, but not all, conditions of model/distribution misspecifications. SEs based on the sandwich-type covariance matrix perform most consistently across conditions. Results also suggest that SEs based on other matrices are either not consistent or perform not as robust as those based on the sandwich-type covariance matrix or the observed information matrix.

Type
Original Paper
Copyright
Copyright © 2013 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baker, F.B., Kim, S.H. (2004). Item response theory: parameter estimation techniques, (2nd ed.). New York: DekkerCrossRefGoogle Scholar
Bentler, P.M. (1995). EQS structural equations program manual, Encino: Multivariate SoftwareGoogle Scholar
Bock, R.D., Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: application of an EM algorithm. Psychometrika, 46, 443459CrossRefGoogle Scholar
Bock, R.D., Lieberman, M. (1970). Fitting a response model for n dichotomously scored items. Psychometrika, 35, 179197CrossRefGoogle Scholar
Casella, G., Berger, R.L. (2001). Statistical inference, (2nd ed.). Pacific Grove: Duxbury PressGoogle Scholar
Dempster, A.P., Laird, N.M., Rubin, D.B. (1977). Maximum likelihood from incomplete data via the EM algorithm (with discussion). Journal of the Royal Statistical Society. Series B, 39, 138CrossRefGoogle Scholar
Drasgow, F., Parsons, C.K. (1983). Application of unidimensional item response theory models to multidimensional data. Applied Psychological Measurement, 7, 189199CrossRefGoogle Scholar
du Toit, M. (2003). IRT from SSI: bilog-mg, multilog, parscale, testfact, Lincolnwood: Scientific Software InternationalGoogle Scholar
Efron, B., Hinkley, D.V. (1978). Assessing the accuracy of the maximum likelihood estimator: observed versus expected Fisher information. Biometrika, 65, 457487CrossRefGoogle Scholar
Efron, B., Tibshirani, R.J. (1993). An introduction to the bootstrap, New York: Chapman & HallCrossRefGoogle Scholar
Embretson, S.E., Reise, S.P. (2000). Item response theory for psychologists, Mahwah: ErlbaumGoogle Scholar
Firth, D. (1993). Bias reduction of maximum likelihood estimates. Biometrika, 80, 2738CrossRefGoogle Scholar
Harrison, D.A. (1986). Robustness of IRT parameter estimation to violations on the unidimensionality assumption. Journal of Educational Statistics, 11, 91115CrossRefGoogle Scholar
Hayes, A.F., Cai, L. (2007). Using heteroscedasticity-consistent standard error estimators in OLS regression: an introduction and software implementation. Behavior Research Methods, 39, 709722CrossRefGoogle Scholar
Huber, P.J. (1967). The behavior of maximum likelihood estimates under nonstandard conditions. Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, Berkeley: University of California Press 221233Google Scholar
Kirisci, L., Hsu, T.-C., Yu, L. (2001). Robustness of item parameter estimation programs to assumptions of unidimensionality and normality. Applied Psychological Measurement, 25, 146162CrossRefGoogle Scholar
Li, Y.H. (2002). Analytically asymptotic standard errors of multidimensional IRT item parameters. In Shohov, S.P. (Eds.), Advances in psychology research, New York: Nova Science Publishers 87108Google Scholar
Li, Y.H., Lissitz, R.W. (2004). Applications of the analytically derived asymptotic standard errors of item response theory item parameter estimates. Journal of Educational Measurement, 41, 85117CrossRefGoogle Scholar
Liang, K.Y., Zeger, S.L. (1986). Longitudinal data analysis using generalized linear models. Biometrika, 73, 1322CrossRefGoogle Scholar
Lord, F.M., Novick, M.R. (1968). Statistical theories of mental test scores, Reading: Addison-WesleyGoogle Scholar
Louis, T.A. (1982). Finding the observed information matrix when using the EM algorithm. Journal of the Royal Statistical Society. Series B, 44, 226233CrossRefGoogle Scholar
Maronna, R.A., Martin, R.D., Yohai, V.J. (2006). Robust statistics: theory and methods, New York: WileyCrossRefGoogle Scholar
Maydeu-Olivares, A., Cai, L., Hernandez, A. (2011). Comparing the fit of IRT and factor analysis models. Structural Equation Modeling, 18, 333356CrossRefGoogle Scholar
Mislevy, R.J. (1986). Bayes model estimation in item response models. Psychometrika, 51, 177195CrossRefGoogle Scholar
Mislevy, R.J., Bock, R.D. (1990). BILOG: maximum likelihood item analysis and test scoring with logistic models for binary items, Chicago: Scientific Software InternationalGoogle Scholar
Mislevy, R.J., Sheehan, K.M. (1989). Information matrices in latent-variable models. Journal of Educational Statistics, 14, 335350CrossRefGoogle Scholar
Muthén, L.K., Muthén, B.O. (2007). Mplus user’s guide, (5th ed.). Los Angeles: Muthén & MuthénGoogle Scholar
Ogasawara, H. (2010). Asymptotic expansions for the pivots using log-likelihood derivatives with an application in item response theory. Journal of Multivariate Analysis, 101, 21492167CrossRefGoogle Scholar
Reise, S.P., Yu, J. (1990). Parameter recovery in the graded response model using MULTILOG. Journal of Educational Measurement, 27, 133144CrossRefGoogle Scholar
Schuster, C., Yuan, K.-H. (2011). Robust estimation of latent ability in item response models. Journal of Educational and Behavioral Statistics, 36, 720735CrossRefGoogle Scholar
Stout, W.F. (1987). A nonparametric approach for assessing latent trait dimensionality. Psychometrika, 52, 7998CrossRefGoogle Scholar
Stout, W.F., Habing, B., Douglas, J., Kim, H.R., Roussos, L.A., Zhang, J. (1996). Conditional covariance-based nonparametric multidimensionality assessment. Applied Psychological Measurement, 20, 331354CrossRefGoogle Scholar
Thissen, D., Wainer, H. (1982). Some standard errors in item response theory. Psychometrika, 47, 397412CrossRefGoogle Scholar
Toland, M.D. (2008). Determining the accuracy of item parameter standard error of estimates in BILOG-MG3. Doctoral dissertation. Retrieved from ProQuest LLC (UMI Number 3317288). Google Scholar
Tsutakawa, R.K. (1984). Estimation of two-parameter logistic item response curves. Journal of Educational Statistics, 9, 263276CrossRefGoogle Scholar
Wainer, H., Thissen, D. (1987). Estimating ability with the wrong model. Journal of Educational Statistics, 12, 339368CrossRefGoogle Scholar
White, H. (1982). Maximum likelihood estimation of misspecified models. Econometrica, 50, 125CrossRefGoogle Scholar
Woods, C.M., Lin, N. (2009). Item response theory with estimation of the latent density using Davidian curves. Applied Psychological Measurement, 33, 102117CrossRefGoogle Scholar
Woods, C.M., Thissen, D. (2006). Item response theory with estimation of the latent population distribution using spline-based densities. Psychometrika, 71, 281301CrossRefGoogle ScholarPubMed
Yuan, K.-H., Hayashi, K. (2006). Standard errors in covariance structure models: asymptotics versus bootstrap. British Journal of Mathematical & Statistical Psychology, 59, 397417CrossRefGoogle ScholarPubMed
Zhang, J., Stout, W.F. (1999). The theoretical DETECT index of dimensionality and its application to approximate simple structure. Psychometrika, 64, 213249CrossRefGoogle Scholar