Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-05T19:06:59.012Z Has data issue: false hasContentIssue false

Indclas: A Three-Way Hierarchical Classes Model

Published online by Cambridge University Press:  01 January 2025

Iwin Leenen*
Affiliation:
Katholieke Universiteit Leuven
Iven Van Mechelen
Affiliation:
Katholieke Universiteit Leuven
Paul De Boeck
Affiliation:
Katholieke Universiteit Leuven
Seymour Rosenberg
Affiliation:
Rutgers University
*
Requests for reprints should be sent to Iwin Leenen, Department of Psychology, Tiensestraat 102, B-3000 Leuven, BELGIUM. E-mail: [email protected]

Abstract

A three-way three-mode extension of De Boeck and Rosenberg's (1988) two-way two-mode hierarchical classes model is presented for the analysis of individual differences in binary object × attribute arrays. In line with the two-way hierarchical classes model, the three-way extension represents both the association relation among the three modes and the set-theoretical relations among the elements of each model. An algorithm for fitting the model is presented and evaluated in a simulation study. The model is illustrated with data on psychiatric diagnosis. Finally, the relation between the model and extant models for three-way data is discussed.

Type
Original Paper
Copyright
Copyright © 1999 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The research reported in this paper was partially supported by NATO (Grant CRG.921321 to Iven Van Mechelen and Seymour Rosenberg).

References

Andreasen, N.C., & Olsen, S. (1982). Negative v positive schizophrenia: Definition and validation. Archives of General Psychiatry, 39, 789794.CrossRefGoogle ScholarPubMed
Barbut, M., & Monjardet, B. (1970). Ordre et classification: Algèbre et combinatoire, Paris: Hachette. [Order and classification: Algebra combinatorics]Google Scholar
Carroll, J.D., & Arabie, P. (1983). INDCLUS: An individual differences generalization of the ADCLUS model and MAPCLUS algorithm. Psychometrika, 48, 157169.CrossRefGoogle Scholar
Carroll, J.D., & Chang, J.J. (1970). Analysis of individual differences in multidimensional scaling via an N-way generalization of “Eckart-Young” decomposition. Psychometrika, 35, 283319.CrossRefGoogle Scholar
Carroll, J.D., & Chaturvedi, A. (1995). A general approach to clustering and multidimensional scaling of two-way, three-way, or higher-way data. In Luce, R.D., D'Zmura, M., Hoffman, D., Iverson, G.J., & Romney, A.K. (Eds.), Geometric representations of perceptual phenomena (pp. 295318). Mahwah: Erlbaum.Google Scholar
Chaturvedi, A., & Carroll, J.D. (1994). An alternating combinatorial optimization approach to fitting the INDCLUS and generalized INDCLUS models. Journal of Classification, 11, 155170.CrossRefGoogle Scholar
Coombs, C.H. (1994). A theory of data, New York: Wiley.Google Scholar
Coombs, C.H., & Kao, R.C. (1955). Nonmetric factor analysis, Ann Arbor: University of Michigan Press.Google Scholar
De Boeck, P. (1986). HICLAS computer program: Version 1.0, Leuven: Katholieke Universiteit.Google Scholar
De Boeck, P., & Rosenberg, S. (1988). Hierarchical classes: Model and data analysis. Psychometrika, 53, 361381.CrossRefGoogle Scholar
Harshman, R.A. (1970). Foundations of the PARAFAC procedure: Models and conditions for an “explanatory” multimodal factor analysis. UCLA Working Papers in Phonetics, 16, 184.Google Scholar
Hubert, L., & Arabie, P. (1985). Comparing partitions. Journal of Classification, 2, 193218.CrossRefGoogle Scholar
Jaccard, P. (1908). Nouvelles recherches sur la distribution florale. Bulletin de la Société Vaudoise de Sciences Naturelles, 44, 223270. [New research on floral distribution]Google Scholar
Kim, K.H. (1982). Boolean matrix theory and applications, New York: Marcel Dekker.Google Scholar
Kruskal, J.B. (1977). Three-way arrays: Rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics. Linear Algebra and Its Applications, 18, 95138.CrossRefGoogle Scholar
Kruskal, J.B. (1989). Rank, decomposition, and uniqueness for 3-way and N-way arrays. In Coppi, R., & Bolasco, S. (Eds.), Multiway data analysis (pp. 718). Amsterdam: North Holland.Google Scholar
Leenen, I., & Van Mechelen, I. (1998). A branch-and-bound algorithm for Boolean regression. In Balderjahn, I., Mathar, R., & Schader, M. (Eds.), Data highways and information flooding, a challenge for classification and data analysis (pp. 164171). Berlin: Springer-Verlag.CrossRefGoogle Scholar
Leenen, I., Van Mechelen, I., & De Boeck, P. (in press). A generic disjunctive/conjunctive decomposition model for n-ary relations. Journal of Mathematical Psychology.Google Scholar
Shepard, R.N., & Arabie, P. (1979). Additive clustering: Representation of similarities as combinations of discrete overlapping properties. Psychological Review, 86, 87123.CrossRefGoogle Scholar
Sneath, P.H.A., & Sokal, R.R. (1973). Numerical taxonomy, San Francisco: Freeman.Google Scholar
Stuart, G.W., Malone, V., Currie, J., Klimidis, S., & Minas, I.H. (1995). Positive and negative symptoms in neuroleptic-free psychotic inpatients. Schizophrenia Research, 16, 175188.CrossRefGoogle ScholarPubMed
Van Mechelen, I. (1988). Prediction of a dichotomous criterion variable by means of a logical combination of dichotomous predictors. Mathématiques, Informatiques et Sciences Humaines, 102, 4754.Google Scholar
Van Mechelen, I., & De Boeck, P. (1990). Projection of a binary criterion into a model of hierarchical classes. Psychometrika, 55, 677694.CrossRefGoogle Scholar
Van Mechelen, I., De Boeck, P., & Rosenberg, S. (1995). The conjunctive model of hierarchical classes. Psychometrika, 60, 505521.CrossRefGoogle Scholar