Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-07T19:25:22.269Z Has data issue: false hasContentIssue false

How Social Networks Influence Human Behavior: An Integrated Latent Space Approach for Differential Social Influence

Published online by Cambridge University Press:  01 January 2025

Jina Park
Affiliation:
Yonsei University
Ick Hoon Jin*
Affiliation:
Yonsei University
Minjeong Jeon
Affiliation:
University of California
*
Correspondence should be made to Ick Hoon Jin, Department of Statistics and Data Science, Yonsei University, Seoul 03722, Republic of Korea. Email: [email protected]

Abstract

How social networks influence human behavior has been an interesting topic in applied research. Existing methods often utilized scale-level behavioral data (e.g., total number of positive responses) to estimate the influence of a social network on human behavior. This study proposes a novel approach to studying social influence that utilizes item-level behavioral measures. Under the latent space modeling framework, we integrate the two latent spaces for respondents’ social network data and item-level behavior measures into a single space we call ‘interaction map’. The interaction map visualizes the association between the latent homophily among respondents and their item-level behaviors, revealing differential social influence effects across item-level behaviors. We also measure overall social influence by assessing the impact of the interaction map. We evaluate the properties of the proposed approach via extensive simulation studies and demonstrate the proposed approach with a real data in the context of studying how students’ friendship network influences their participation in school activities.

Type
Theory and Methods
Copyright
Copyright © 2023 The Author(s) under exclusive licence to The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s11336-023-09934-5.

References

References

Abbe, E. (2018). Community detection and stochastic block models: Recent developments. Journal of Machine Learning Research, 18(177), 186.Google Scholar
Barber, B. L., Eccles, J. S., & Stone, M. R. (2001). Whatever happened to the jock, the brain, and the princess?. Journal of Adolescent Research, 16(5), 429455.CrossRefGoogle Scholar
Block, P., Stadtfeld, C., & Snijders, T. (2019). Forms of dependence: Comparing SAOMs and ERGMs from basic principles. Sociological Methods & Research, 48(1), 202239.CrossRefGoogle Scholar
Carr, C. T., & Zube, P. (2015). Network autocorrelation of task performance via informal communication within a virtual world. Journal of Media Psychology, 27(1), 3344.CrossRefGoogle Scholar
Cheng, L. A., Mendonça, G., & Júnior, JCd Farias (2014). Physical activity in adolescents: analysis of the social influence of parents and friends. Jornal de Pediatria, 90(1), 3541.CrossRefGoogle ScholarPubMed
D’Angelo, S., Murphy, T. B., & Alfo, M. (2019). Latent space modelling of multidimensional networks with application to the exchange of votes in Eurovision song contest. Annals of Applied Statistics, 13(2), 900930.CrossRefGoogle Scholar
Daraganova, G., & Robins, G. (2013). Autologistic actor attribute models. Exponential Random Graph Models for Social Networks: Theory, Methods and Applications, pp. 102–114Google Scholar
Decelle, A., Krzakala, F., Moore, C., & Zdeborová, L. (2011). Asymptotic analysis of the stochastic block model for modular networks and its algorithmic applications. Physical Review E, 84(6 CrossRefGoogle ScholarPubMed
Dittrich, D., Leenders, R. T. A. J., & Mulder, J. (2019). Network autocorrelation modeling: A bayes factor approach for testing (multiple) precise and interval hypotheses. Sociological Methods & Research, 48(3), 642676.CrossRefGoogle Scholar
Doreian, P. (1989). Network autocorrelation models: Problems and prospects. Spatial statistics: Past, present, future. pp. 369–389.Google Scholar
Eccles, J., Barber, B., Stone, M., & Hunt, J. (2003). Extracurricular activities and adolescent development. Journal of Social Issues, 59(4), 865889.CrossRefGoogle Scholar
Erdős, P., & Rényi, A. (1960). On the evolution of random graphs. Publications of the Mathematical Institute of the Hungarian Academy of Sciences, 5, 1761.Google Scholar
Feldman, A. F., & Matjasko, J. L. (2005). The role of school-based extracurricular activities in adolescent development: A comprehensive review and future directions. Review of Educational Research, 75(2), 159210.CrossRefGoogle Scholar
Fienberg, S. E. (2012). A brief history of statistical models for network analysis and open challenges. Journal of Computational and Graphical Statistics, 21(4), 825839.CrossRefGoogle Scholar
Fosdick, B. K., & Hoff, P. D. (2015). Testing and modeling dependencies between a network and nodal attributes. Journal of the American Statistical Association, 110(511), 10471056.CrossRefGoogle ScholarPubMed
Frank, K. A., & Xu, R. (2021). Causal inference for social network analysis. The oxford handbook of social networksOxford University Press.Google Scholar
Frank, K. A., Zhao, Y., & Borman, K. (2004). Social capital and the diffusion of innovations within organizations: The case of computer technology in schools. Sociology of Education, 77(2), 148171.CrossRefGoogle Scholar
Frank, O., & Strauss, D. (1986). Markov graphs. Journal of the American Statistical Association, 81(395), 832842.CrossRefGoogle Scholar
Fredricks, J. A., & Eccles, J. S. (2006). Is extracurricular participation associated with beneficial outcomes? concurrent and longitudinal relations. Developmental Psychology, 42(4), 698713.CrossRefGoogle ScholarPubMed
Fujimoto, K., Wang, P., & Valente, T. W. (2013). The decomposed affiliation exposure model: A network approach to segregating peer influences from crowds and organized sports. Network Science, 1(2), 154169.CrossRefGoogle Scholar
Gardner, M., Roth, J., & Brooks-Gunn, J. (2008). Adolescents’ participation in organized activities and developmental success 2 and 8 years after high school: Do sponsorship, duration, and intensity matter?. Developmental Psychology, 44(3), 814830.CrossRefGoogle ScholarPubMed
Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). Bayesian data analysis (Edition, Vol. 3). New York, NY: Chapman and Hall/CRC.CrossRefGoogle Scholar
Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 7(4), 457472.CrossRefGoogle Scholar
Goldsmith-Pinkham, P., & Imbens, G. W. (2013). Social networks and the identification of peer effects. Journal of Business & Economic Statistics, 31(3), 253264.CrossRefGoogle Scholar
Gollini, I., & Murphy, T. B. (2016). Joint modeling of multiple network views. Journal of Computational and Graphical Statistics, 25(1), 246265.CrossRefGoogle Scholar
Gower, J. C. (1975). Generalized procrustes analysis. Psychometrika, 40(1), 3351.CrossRefGoogle Scholar
Handcock, M. S., Raftery, A. E., & Tantrum, J. M. (2007). Model-based clustering for social network. Journal of the Royal Statistical Society, Series A, 170, 301354.CrossRefGoogle Scholar
Hoff, P., Raftery, A., & Handcock, M. S. (2002). Latent space approaches to social network analysis. Journal of the American Statistical Association, 97(460), 10901098.CrossRefGoogle Scholar
Holland, P. W., Laskey, K. B., & Leinhardt, S. (1983). Stochastic blockmodels: First steps. Social Networks, 5(2), 109137.CrossRefGoogle Scholar
Holland, P. W., & Leinhardt, S. (1981). An exponential family of probability distributions for directed graphs. Journal of the American Statistical Association, 76(373), 3350.CrossRefGoogle Scholar
Hunter, D. (2007). Curved exponential family models for social networks. Social Networks, 29(2), 216230.CrossRefGoogle ScholarPubMed
Hunter, D. R., Goodreau, S. M., & Handcock, M. S. (2008). Goodness of fit of social network models. Journal of the American Statistical Association, 103(481), 248258.CrossRefGoogle Scholar
Jeon, M., Jin, I. H., Schweinberger, M., & Baugh, S. (2021). Mapping unobserved item-respondent interactions: A latent space item response model with interaction map. Psychometrika, 86(2), 378403.CrossRefGoogle ScholarPubMed
Knifsend, C. A., & Graham, S. (2011). Too much of a good thing? how breadth of extracurricular participation relates to school-related affect and academic outcomes during adolescence. Journal of Youth and Adolescence, 41(3), 379389.CrossRefGoogle ScholarPubMed
Krivitsky, P. N., Handcock, M. S., Raftery, A. E., & Hoff, P. D. (2009). Representing degree distributions, clustering, and homophily in social networks with latent cluster random network models. Social Networks, 31, 204213.CrossRefGoogle Scholar
Larson, R., Hansen, D., & Moneta, G. (2006). Differing profiles of developmental experiences across types of organized youth activities. Developmental Psychology, 42(5), 849863.CrossRefGoogle ScholarPubMed
Lauritzen, S., Rinaldo, A., & Sadeghi, K. (2017). Random networks, graphical models, and exchangeability. Journal of the Royal Statistical Society, Series B, 80(3), 481508.CrossRefGoogle Scholar
Lee, C., & Wilkinson, D. J. (2019). A review of stochastic block models and extensions for graph clustering. Applied Network Science, 4 122.CrossRefGoogle Scholar
Leenders, R. T. (2002). Modeling social influence through network autocorrelation: Constructing the weight matrix. Social Networks, 24(1), 2147.CrossRefGoogle Scholar
Lei, J., & Rinaldo, A. (2015). Consistency of spectral clustering in stochastic block models. The Annals of Statistics, 43(1), 215237.CrossRefGoogle Scholar
Lu, X., & Szymanski, B. K. (2019). A regularized stochastic block model for the robust community detection in complex networks. Scientific Reports, 9 13247.CrossRefGoogle ScholarPubMed
Mahoney, J. L., Cairns, B. D., & Farmer, T. W. (2003). Promoting interpersonal competence and educational success through extracurricular activity participation. Journal of Educational Psychology, 95(2), 409418.CrossRefGoogle Scholar
Manski, C. F. (1993). Identification of endogenous social effects: The reflection problem. The Review of Economic Studies, 60(3), 531.CrossRefGoogle Scholar
Matias, N. C. F. (2019). Elaboración de una escala de participación en actividades extracurriculares para niños. Ciencias Psicológicas, 235–248.CrossRefGoogle Scholar
McCabe, K., Modecki, K., & Barber, B. (2016). Participation in organized activities protects against adolescents’ risky substance use, even beyond development in conscientiousness. Journal of Youth and Adolescence, 45(11), 22922306.CrossRefGoogle ScholarPubMed
Mercken, L., Snijders, T. A., Steglich, C., Vertiainen, E., & Vries, H. D. (2010). Smoking-based selection and influence in gender-segregated friendship networks: A social network analysis of adolescent smoking. Addiction, 105(7), 12801289.CrossRefGoogle ScholarPubMed
Ord, K. (1975). Estimation methods for models of spatial interaction. Journal of the American Statistical Association, 70(349), 120126.CrossRefGoogle Scholar
Paluck, E. L., Shepherd, H., & Aronow, P. M. (2016). Changing climates of conflict: A social network experiment in 56 schools. Proceedings of the National Academy of Sciences of the United States of America, 113(3), 566571.CrossRefGoogle ScholarPubMed
Paluck, E. L., Shepherd, H., & Aronow, P. M. (2020). Changing climates of conflict: A social network experiment in 56 schools, new jersey, 2012–2013. Inter-university Consortium for Political and Social Research.Google Scholar
Parker, A., Pallotti, F., & Lomi, A. (2021). New network models for the analysis of social contagion in organizations: An introduction to autologistic actor attribute models. Organizational Research Methods, 25(3), 513540.CrossRefGoogle Scholar
Raftery, A., Niu, X., Hoff, P., & Yeung, K. (2012). Fast inference for the latent space network model using a case-control approximate likelihood. Journal of Computational and Graphical Statistics, 21(4), 909919.CrossRefGoogle ScholarPubMed
Rastelli, R., Friel, N., & Raftery, A. (2016). Properties of latent variable network models. Network Science, 4, 407432.CrossRefGoogle Scholar
Ripley, R. M., Snijders, T. A. B., B’oda, Z., V"or"os, A., & Preciado, P. (2022). Manual for Siena version 4.0. Technical report, Oxford: University of Oxford, Department of Statistics; Nuffield College. R package version 1.3.14. https://www.cran.r-project.org/web/packages/RSiena/.Google Scholar
Robins, G., Pattison, P., & Elliott, P. (2001). Network models for social influence processes. Psychometrika, 66(2), 161189.CrossRefGoogle Scholar
Robins, G., Snijders, T., Wang, P., Handcock, M., & Pattison, P. (2007). Recent developments in exponential random graph (p*) models for social networks. Social Networks, 29(2), 192215.CrossRefGoogle Scholar
Rohe, K., Chatterjee, S., & Yu, B. (2011). Spectral clustering and the high-dimensional stochastic blockmodel. The Annals of Statistics, 39(4), 18781915.CrossRefGoogle Scholar
Salter-Townshend, M., & McCormick, T. H. (2017). Latent space models for multiview network data. The Annals of Applied Statistics, 11(3), 12171244.CrossRefGoogle ScholarPubMed
Scott, D., Dam, I., & Wilton, R. (2012). Investigating the effects of social influence on the choice to telework. Environment and Planning A, 44(5), 10161031.CrossRefGoogle Scholar
Sewell, D. K. (2017). Network autocorrelation models with egocentric data. Social Networks, 49, 113123.CrossRefGoogle Scholar
Sewell, D. K., & Chen, Y. (2015). Latent space models for dynamic networks. Journal of the American Statistical Association, 110(512), 16461657.CrossRefGoogle Scholar
Shakarian, P., Bhatnagar, A., Aleali, A., Shaabani, E., & Guo, R. (2015). The Independent Cascade and Linear Threshold Models (pp. 3548). Springer.Google Scholar
Sijtsema, J. J., Ojanen, T., Veenstra, R., Lindenberg, S., Hawley, P. H., & Little, T. D. (2010). Forms and functions of aggression in adolescent friendship selection and influence: A longitudinal social network analysis. Social Development, 19(3), 515534.CrossRefGoogle Scholar
Simpkins, S. D., Schaefer, D. R., Price, C. D., & Vest, A. E. (2013). Adolescent friendships, bmi, and physical activity: Untangling selection and influence through longitudinal social network analysis. Journal of Research on Adolescence, 23(3), 537549.CrossRefGoogle ScholarPubMed
Snijders, T. (2001). The statistical evaluation of social network dynamics. Sociological Methodology, 31(1), 361395.CrossRefGoogle Scholar
Snijders, T. (2017). Stochastic actor-oriented models for network dynamics. Annual Review of Statistics and Its Application, 4, 343363.CrossRefGoogle Scholar
Snijders, T., Bunt, G. G., & Steglich, C. (2010). Introduction to actor-based models for network dynamics. Social Networks, 32(1), 4460.CrossRefGoogle Scholar
Steglich, C., Snijders, T. A. B., & Pearson, M. (2010). Dynamic networks and behavior: Separating selection from influence. Sociological Methodology, 40(1), 329393.CrossRefGoogle Scholar
Sun, J., & Tang, J. (2011). A survey of models and algorithms for social influence analysis. In Aggarwal, C. C. Social network data analytics (pp. 177214). Springer.CrossRefGoogle Scholar
Sweet, T., & Adhikari, S. (2020). A latent space network model for social influence. Psychometrika, 85(2), 251274.CrossRefGoogle ScholarPubMed
Urberg, K. A., Değirmencioğlu, S. M., & Pilgrim, C. (1997). Close friend and group influence on adolescent cigarette smoking and alcohol use. Developmental Psychology, 33(5), 834844.CrossRefGoogle ScholarPubMed
Valente, T.W. (2005). Network models and methods for studying the diffusion of innovations. In Models and methods in social network analysis, (pp. 98116). Cambridge University Press.CrossRefGoogle Scholar
Vitale, M. P., Porzio, G. C., & Doreian, P. (2016). Examining the effect of social influence on student performance through network autocorrelation models. Journal of Applied Statistics, 43(1), 115127.CrossRefGoogle Scholar
Wang, S. S., Paul, S., & De Boeck, P. (2019). Joint latent space model for social networks with multivariate attributes. arXiv:1910.12128.Google Scholar
Zhang, A. Y., & Zhou, H. H. (2016). Minimax rates of community detection in stochastic block models. The Annals of Statistics, 44(5), 22522280.CrossRefGoogle Scholar
Zheng, K., Padman, R., Krackhardt, D., Johnson, M. P., & Diamond, H. S. (2010). Social networks and physician adoption of electronic health records: Insights from an empirical study. Journal of the American Medical Informatics Association, 17(3), 328336.CrossRefGoogle ScholarPubMed
Abbe, E. (2018). Community detection and stochastic block models: Recent developments. Journal of Machine Learning Research, 18(177), 186.Google Scholar
Barber, B. L., Eccles, J. S., & Stone, M. R. (2001). Whatever happened to the jock, the brain, and the princess?. Journal of Adolescent Research, 16(5), 429455.CrossRefGoogle Scholar
Block, P., Stadtfeld, C., & Snijders, T. (2019). Forms of dependence: Comparing SAOMs and ERGMs from basic principles. Sociological Methods & Research, 48(1), 202239.CrossRefGoogle Scholar
Carr, C. T., & Zube, P. (2015). Network autocorrelation of task performance via informal communication within a virtual world. Journal of Media Psychology, 27(1), 3344.CrossRefGoogle Scholar
Cheng, L. A., Mendonça, G., & Júnior, JCd Farias (2014). Physical activity in adolescents: analysis of the social influence of parents and friends. Jornal de Pediatria, 90(1), 3541.CrossRefGoogle ScholarPubMed
D’Angelo, S., Murphy, T. B., & Alfo, M. (2019). Latent space modelling of multidimensional networks with application to the exchange of votes in Eurovision song contest. Annals of Applied Statistics, 13(2), 900930.CrossRefGoogle Scholar
Daraganova, G., & Robins, G. (2013). Autologistic actor attribute models. Exponential Random Graph Models for Social Networks: Theory, Methods and Applications, pp. 102–114Google Scholar
Decelle, A., Krzakala, F., Moore, C., & Zdeborová, L. (2011). Asymptotic analysis of the stochastic block model for modular networks and its algorithmic applications. Physical Review E, 84(6 CrossRefGoogle ScholarPubMed
Dittrich, D., Leenders, R. T. A. J., & Mulder, J. (2019). Network autocorrelation modeling: A bayes factor approach for testing (multiple) precise and interval hypotheses. Sociological Methods & Research, 48(3), 642676.CrossRefGoogle Scholar
Doreian, P. (1989). Network autocorrelation models: Problems and prospects. Spatial statistics: Past, present, future. pp. 369–389.Google Scholar
Eccles, J., Barber, B., Stone, M., & Hunt, J. (2003). Extracurricular activities and adolescent development. Journal of Social Issues, 59(4), 865889.CrossRefGoogle Scholar
Erdős, P., & Rényi, A. (1960). On the evolution of random graphs. Publications of the Mathematical Institute of the Hungarian Academy of Sciences, 5, 1761.Google Scholar
Feldman, A. F., & Matjasko, J. L. (2005). The role of school-based extracurricular activities in adolescent development: A comprehensive review and future directions. Review of Educational Research, 75(2), 159210.CrossRefGoogle Scholar
Fienberg, S. E. (2012). A brief history of statistical models for network analysis and open challenges. Journal of Computational and Graphical Statistics, 21(4), 825839.CrossRefGoogle Scholar
Fosdick, B. K., & Hoff, P. D. (2015). Testing and modeling dependencies between a network and nodal attributes. Journal of the American Statistical Association, 110(511), 10471056.CrossRefGoogle ScholarPubMed
Frank, K. A., & Xu, R. (2021). Causal inference for social network analysis. The oxford handbook of social networksOxford University Press.Google Scholar
Frank, K. A., Zhao, Y., & Borman, K. (2004). Social capital and the diffusion of innovations within organizations: The case of computer technology in schools. Sociology of Education, 77(2), 148171.CrossRefGoogle Scholar
Frank, O., & Strauss, D. (1986). Markov graphs. Journal of the American Statistical Association, 81(395), 832842.CrossRefGoogle Scholar
Fredricks, J. A., & Eccles, J. S. (2006). Is extracurricular participation associated with beneficial outcomes? concurrent and longitudinal relations. Developmental Psychology, 42(4), 698713.CrossRefGoogle ScholarPubMed
Fujimoto, K., Wang, P., & Valente, T. W. (2013). The decomposed affiliation exposure model: A network approach to segregating peer influences from crowds and organized sports. Network Science, 1(2), 154169.CrossRefGoogle Scholar
Gardner, M., Roth, J., & Brooks-Gunn, J. (2008). Adolescents’ participation in organized activities and developmental success 2 and 8 years after high school: Do sponsorship, duration, and intensity matter?. Developmental Psychology, 44(3), 814830.CrossRefGoogle ScholarPubMed
Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). Bayesian data analysis (Edition, Vol. 3). New York, NY: Chapman and Hall/CRC.CrossRefGoogle Scholar
Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 7(4), 457472.CrossRefGoogle Scholar
Goldsmith-Pinkham, P., & Imbens, G. W. (2013). Social networks and the identification of peer effects. Journal of Business & Economic Statistics, 31(3), 253264.CrossRefGoogle Scholar
Gollini, I., & Murphy, T. B. (2016). Joint modeling of multiple network views. Journal of Computational and Graphical Statistics, 25(1), 246265.CrossRefGoogle Scholar
Gower, J. C. (1975). Generalized procrustes analysis. Psychometrika, 40(1), 3351.CrossRefGoogle Scholar
Handcock, M. S., Raftery, A. E., & Tantrum, J. M. (2007). Model-based clustering for social network. Journal of the Royal Statistical Society, Series A, 170, 301354.CrossRefGoogle Scholar
Hoff, P., Raftery, A., & Handcock, M. S. (2002). Latent space approaches to social network analysis. Journal of the American Statistical Association, 97(460), 10901098.CrossRefGoogle Scholar
Holland, P. W., Laskey, K. B., & Leinhardt, S. (1983). Stochastic blockmodels: First steps. Social Networks, 5(2), 109137.CrossRefGoogle Scholar
Holland, P. W., & Leinhardt, S. (1981). An exponential family of probability distributions for directed graphs. Journal of the American Statistical Association, 76(373), 3350.CrossRefGoogle Scholar
Hunter, D. (2007). Curved exponential family models for social networks. Social Networks, 29(2), 216230.CrossRefGoogle ScholarPubMed
Hunter, D. R., Goodreau, S. M., & Handcock, M. S. (2008). Goodness of fit of social network models. Journal of the American Statistical Association, 103(481), 248258.CrossRefGoogle Scholar
Jeon, M., Jin, I. H., Schweinberger, M., & Baugh, S. (2021). Mapping unobserved item-respondent interactions: A latent space item response model with interaction map. Psychometrika, 86(2), 378403.CrossRefGoogle ScholarPubMed
Knifsend, C. A., & Graham, S. (2011). Too much of a good thing? how breadth of extracurricular participation relates to school-related affect and academic outcomes during adolescence. Journal of Youth and Adolescence, 41(3), 379389.CrossRefGoogle ScholarPubMed
Krivitsky, P. N., Handcock, M. S., Raftery, A. E., & Hoff, P. D. (2009). Representing degree distributions, clustering, and homophily in social networks with latent cluster random network models. Social Networks, 31, 204213.CrossRefGoogle Scholar
Larson, R., Hansen, D., & Moneta, G. (2006). Differing profiles of developmental experiences across types of organized youth activities. Developmental Psychology, 42(5), 849863.CrossRefGoogle ScholarPubMed
Lauritzen, S., Rinaldo, A., & Sadeghi, K. (2017). Random networks, graphical models, and exchangeability. Journal of the Royal Statistical Society, Series B, 80(3), 481508.CrossRefGoogle Scholar
Lee, C., & Wilkinson, D. J. (2019). A review of stochastic block models and extensions for graph clustering. Applied Network Science, 4 122.CrossRefGoogle Scholar
Leenders, R. T. (2002). Modeling social influence through network autocorrelation: Constructing the weight matrix. Social Networks, 24(1), 2147.CrossRefGoogle Scholar
Lei, J., & Rinaldo, A. (2015). Consistency of spectral clustering in stochastic block models. The Annals of Statistics, 43(1), 215237.CrossRefGoogle Scholar
Lu, X., & Szymanski, B. K. (2019). A regularized stochastic block model for the robust community detection in complex networks. Scientific Reports, 9 13247.CrossRefGoogle ScholarPubMed
Mahoney, J. L., Cairns, B. D., & Farmer, T. W. (2003). Promoting interpersonal competence and educational success through extracurricular activity participation. Journal of Educational Psychology, 95(2), 409418.CrossRefGoogle Scholar
Manski, C. F. (1993). Identification of endogenous social effects: The reflection problem. The Review of Economic Studies, 60(3), 531.CrossRefGoogle Scholar
Matias, N. C. F. (2019). Elaboración de una escala de participación en actividades extracurriculares para niños. Ciencias Psicológicas, 235–248.CrossRefGoogle Scholar
McCabe, K., Modecki, K., & Barber, B. (2016). Participation in organized activities protects against adolescents’ risky substance use, even beyond development in conscientiousness. Journal of Youth and Adolescence, 45(11), 22922306.CrossRefGoogle ScholarPubMed
Mercken, L., Snijders, T. A., Steglich, C., Vertiainen, E., & Vries, H. D. (2010). Smoking-based selection and influence in gender-segregated friendship networks: A social network analysis of adolescent smoking. Addiction, 105(7), 12801289.CrossRefGoogle ScholarPubMed
Ord, K. (1975). Estimation methods for models of spatial interaction. Journal of the American Statistical Association, 70(349), 120126.CrossRefGoogle Scholar
Paluck, E. L., Shepherd, H., & Aronow, P. M. (2016). Changing climates of conflict: A social network experiment in 56 schools. Proceedings of the National Academy of Sciences of the United States of America, 113(3), 566571.CrossRefGoogle ScholarPubMed
Paluck, E. L., Shepherd, H., & Aronow, P. M. (2020). Changing climates of conflict: A social network experiment in 56 schools, new jersey, 2012–2013. Inter-university Consortium for Political and Social Research.Google Scholar
Parker, A., Pallotti, F., & Lomi, A. (2021). New network models for the analysis of social contagion in organizations: An introduction to autologistic actor attribute models. Organizational Research Methods, 25(3), 513540.CrossRefGoogle Scholar
Raftery, A., Niu, X., Hoff, P., & Yeung, K. (2012). Fast inference for the latent space network model using a case-control approximate likelihood. Journal of Computational and Graphical Statistics, 21(4), 909919.CrossRefGoogle ScholarPubMed
Rastelli, R., Friel, N., & Raftery, A. (2016). Properties of latent variable network models. Network Science, 4, 407432.CrossRefGoogle Scholar
Ripley, R. M., Snijders, T. A. B., B’oda, Z., V"or"os, A., & Preciado, P. (2022). Manual for Siena version 4.0. Technical report, Oxford: University of Oxford, Department of Statistics; Nuffield College. R package version 1.3.14. https://www.cran.r-project.org/web/packages/RSiena/.Google Scholar
Robins, G., Pattison, P., & Elliott, P. (2001). Network models for social influence processes. Psychometrika, 66(2), 161189.CrossRefGoogle Scholar
Robins, G., Snijders, T., Wang, P., Handcock, M., & Pattison, P. (2007). Recent developments in exponential random graph (p*) models for social networks. Social Networks, 29(2), 192215.CrossRefGoogle Scholar
Rohe, K., Chatterjee, S., & Yu, B. (2011). Spectral clustering and the high-dimensional stochastic blockmodel. The Annals of Statistics, 39(4), 18781915.CrossRefGoogle Scholar
Salter-Townshend, M., & McCormick, T. H. (2017). Latent space models for multiview network data. The Annals of Applied Statistics, 11(3), 12171244.CrossRefGoogle ScholarPubMed
Scott, D., Dam, I., & Wilton, R. (2012). Investigating the effects of social influence on the choice to telework. Environment and Planning A, 44(5), 10161031.CrossRefGoogle Scholar
Sewell, D. K. (2017). Network autocorrelation models with egocentric data. Social Networks, 49, 113123.CrossRefGoogle Scholar
Sewell, D. K., & Chen, Y. (2015). Latent space models for dynamic networks. Journal of the American Statistical Association, 110(512), 16461657.CrossRefGoogle Scholar
Shakarian, P., Bhatnagar, A., Aleali, A., Shaabani, E., & Guo, R. (2015). The Independent Cascade and Linear Threshold Models (pp. 3548). Springer.Google Scholar
Sijtsema, J. J., Ojanen, T., Veenstra, R., Lindenberg, S., Hawley, P. H., & Little, T. D. (2010). Forms and functions of aggression in adolescent friendship selection and influence: A longitudinal social network analysis. Social Development, 19(3), 515534.CrossRefGoogle Scholar
Simpkins, S. D., Schaefer, D. R., Price, C. D., & Vest, A. E. (2013). Adolescent friendships, bmi, and physical activity: Untangling selection and influence through longitudinal social network analysis. Journal of Research on Adolescence, 23(3), 537549.CrossRefGoogle ScholarPubMed
Snijders, T. (2001). The statistical evaluation of social network dynamics. Sociological Methodology, 31(1), 361395.CrossRefGoogle Scholar
Snijders, T. (2017). Stochastic actor-oriented models for network dynamics. Annual Review of Statistics and Its Application, 4, 343363.CrossRefGoogle Scholar
Snijders, T., Bunt, G. G., & Steglich, C. (2010). Introduction to actor-based models for network dynamics. Social Networks, 32(1), 4460.CrossRefGoogle Scholar
Steglich, C., Snijders, T. A. B., & Pearson, M. (2010). Dynamic networks and behavior: Separating selection from influence. Sociological Methodology, 40(1), 329393.CrossRefGoogle Scholar
Sun, J., & Tang, J. (2011). A survey of models and algorithms for social influence analysis. In Aggarwal, C. C. Social network data analytics (pp. 177214). Springer.CrossRefGoogle Scholar
Sweet, T., & Adhikari, S. (2020). A latent space network model for social influence. Psychometrika, 85(2), 251274.CrossRefGoogle ScholarPubMed
Urberg, K. A., Değirmencioğlu, S. M., & Pilgrim, C. (1997). Close friend and group influence on adolescent cigarette smoking and alcohol use. Developmental Psychology, 33(5), 834844.CrossRefGoogle ScholarPubMed
Valente, T.W. (2005). Network models and methods for studying the diffusion of innovations. In Models and methods in social network analysis, (pp. 98116). Cambridge University Press.CrossRefGoogle Scholar
Vitale, M. P., Porzio, G. C., & Doreian, P. (2016). Examining the effect of social influence on student performance through network autocorrelation models. Journal of Applied Statistics, 43(1), 115127.CrossRefGoogle Scholar
Wang, S. S., Paul, S., & De Boeck, P. (2019). Joint latent space model for social networks with multivariate attributes. arXiv:1910.12128.Google Scholar
Zhang, A. Y., & Zhou, H. H. (2016). Minimax rates of community detection in stochastic block models. The Annals of Statistics, 44(5), 22522280.CrossRefGoogle Scholar
Zheng, K., Padman, R., Krackhardt, D., Johnson, M. P., & Diamond, H. S. (2010). Social networks and physician adoption of electronic health records: Insights from an empirical study. Journal of the American Medical Informatics Association, 17(3), 328336.CrossRefGoogle ScholarPubMed
Supplementary material: File

Park et al. supplementary material

Supplementary Material 1
Download Park et al. supplementary material(File)
File 191.9 KB
Supplementary material: File

Park et al. supplementary material

Supplementary Material 2
Download Park et al. supplementary material(File)
File 2.2 MB
Supplementary material: File

Park et al. supplementary material

Supplementary Material 3
Download Park et al. supplementary material(File)
File 62.1 MB
Supplementary material: File

Park et al. supplementary material

Supplementary Material 4
Download Park et al. supplementary material(File)
File 721.8 KB