Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-06T01:26:36.021Z Has data issue: false hasContentIssue false

The Heterogeneous P-Median Problem for Categorization Based Clustering

Published online by Cambridge University Press:  01 January 2025

Simon J. Blanchard*
Affiliation:
McDonough School of Business, Georgetown University
Daniel Aloise
Affiliation:
Department of Computer Engineering and Automation, Universidade Federal do Rio Grande do Norte
Wayne S. DeSarbo
Affiliation:
Department of Marketing, Smeal College of Business, Pennsylvania State University
*
Requests for reprints should be sent to Simon J. Blanchard, McDonough School of Business, Georgetown University, 37th and O St. N.W., Washington, DC 20057, USA. E-mail: [email protected]

Abstract

The p-median offers an alternative to centroid-based clustering algorithms for identifying unobserved categories. However, existing p-median formulations typically require data aggregation into a single proximity matrix, resulting in masked respondent heterogeneity. A proposed three-way formulation of the p-median problem explicitly considers heterogeneity by identifying groups of individual respondents that perceive similar category structures. Three proposed heuristics for the heterogeneous p-median (HPM) are developed and then illustrated in a consumer psychology context using a sample of undergraduate students who performed a sorting task of major U.S. retailers, as well as a through Monte Carlo analysis.

Type
Original Paper
Copyright
Copyright © 2012 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Addelman, S. (1962). Orthogonal main-effect plans for asymmetrical factorial experiments. Technometrics, 4(1), 2146.CrossRefGoogle Scholar
Ashby, F.G., Maddox, T.W., & Lee, W.W. (1994). On the dangers of average across subjects when using multidimensional scaling or the similarity-choice model. Psychological Science, 5(3), 144151.CrossRefGoogle Scholar
Baum, E.B. (1986). Toward practical ‘neural’ computation for combinatorial optimization problems. In Denker, J. Neural networks for computing (pp. 5364). New York: American Institute of Physics.Google Scholar
Berman, O., & Drezner, Z. (2008). The p-median problem under uncertainty. European Journal of Operations Research, 189(1), 1930.CrossRefGoogle Scholar
Bettman, J.R., Luce, M.F., & Payne, J.W. (1998). Constructive consumer choice processes. Journal of Consumer Research, 25(3), 187217.CrossRefGoogle Scholar
Bijmolt, T.H.A., & Wedel, M. (1995). The effects of alternative methods of collecting similarity data for multidimensional scaling. International Journal of Research in Marketing, 12(4), 363371.CrossRefGoogle Scholar
Blanchard, S.J., DeSarbo, W.S., Atalay, A.S., & Harmancioglu, N. (2012). Identifying consumer heterogeneity in unobserved categories. Marketing Letters, 23(1), 177194.CrossRefGoogle Scholar
Boone, L.E., & Kurtz, D.L. (2009). Contemporary marketing. Mason: South-Western Educational Publishing.Google Scholar
Brusco, M.J., Cradit, J.D., & Tashchian, A. (2003). Multicriterion clusterwise regression for joint segmentation settings: an application to customer value. Journal of Marketing Research, 40(2), 225234.CrossRefGoogle Scholar
Brusco, M.J., & Cradit, J.D. (2005). ConPar: a method for identifying groups of concordant subject proximity matrices for subsequent multidimensional scaling analyses. Journal of Mathematical Psychology, 49(2), 142154.CrossRefGoogle Scholar
Brusco, M.J., & Köhn, H.-F. (2008). Comment on ‘Clustering by passing messages between data points’. Science, 319(5864), 726.CrossRefGoogle ScholarPubMed
Brusco, M.J., & Köhn, H.-F. (2008). Optimal partitioning of a data set based on the p-median problem. Psychometrika, 73(1), 89105.CrossRefGoogle Scholar
Brusco, M.J., & Köhn, H.-F. (2009). Exemplar-based clustering via simulated annealing. Psychometrika, 74(3), 457475.CrossRefGoogle Scholar
Conn, A.R., Scheinberg, K., & Vincente, L.N. (2009). Introduction to derivative-free optimization. Philadelphia: SIAM.CrossRefGoogle Scholar
Coxon, A.P.M. (1999). Sorting data: collection and analysis. Thousand Oaks: Sage.CrossRefGoogle Scholar
Crainic, T.G., Gendreau, M., Hansen, P., & Mladenović, N. (2007). Cooperative parallel variable neighborhood search for the p-median. Journal of Heuristics, 10(3), 293314.CrossRefGoogle Scholar
Daws, J.T. (1996). The analysis of free-sorting data: beyond pairwise co-occurrence. Journal of Classification, 13(1), 5780.CrossRefGoogle Scholar
DeSarbo, W.S. (1982). GENNCLUS: new models for general nonhierarchical clustering analysis. Psychometrika, 47(4), 436449.CrossRefGoogle Scholar
DeSarbo, W.S., & Carroll, J.D. (1985). Three-way metric unfolding via alternating weighted least squares. Psychometrika, 50(3), 275300.CrossRefGoogle Scholar
DeSarbo, W.S., & Cron, W.L. (1988). A maximum likelihood methodology clusterwise linear regression. Journal of Classification, 5(2), 249289.CrossRefGoogle Scholar
Farquhar, P.H., Han, J.Y., Herr, P.M., & Ijiri, Y. (1992). Strategies for leveraging master-brands. Marketing Research, 4(3), 3243.Google Scholar
Fazio, R.H., & Dunton, B.C. (1997). Categorization by race: the impact of automatic and controlled components of racial prejudice. Journal of Experimental Social Psychology, 33(5), 451470.CrossRefGoogle Scholar
Forgy, E.W. (1965). Cluster analysis of multivariate data: efficiency vs. interpretability of classifications. Biometrics, 21(3), 768769.Google Scholar
Floudas, C.A. (1995). Non-linear and mixed-integer optimisation. New York: Oxford University Press.CrossRefGoogle Scholar
Furnas, G.W. (1989). Metric family portraits. Journal of Classification, 6(1), 752.CrossRefGoogle Scholar
Gigerenzer, G., & Todd, P.M. (1999). Simple heuristics that make us smart. New York: Oxford University Press.Google Scholar
Griffin, A., & Hauser, J.R. (1993). The voice of the customer. Marketing Science, 12(1), 127.CrossRefGoogle Scholar
Hansen, P., Brimberg, J., Urosevic, D., & Mladenović, N. (2009). Solving large p-median clustering problems by primal-dual variable neighborhood search. Data Mining and Knowledge Discovery, 19(3), 351375.CrossRefGoogle Scholar
Hansen, P., & Mladenović, N. (2001). Variable neighborhood search: principles and applications. European Journal of Operational Research, 130, 449467.CrossRefGoogle Scholar
Hauser, J.R., Toubia, O., Evgeniou, T., Befurt, R., & Dzyabura, D. (2010). Disjunctions of conjunctions, cognitive simplicity, and consideration sets. Journal of Marketing Research, 47(3), 485496.CrossRefGoogle Scholar
Helsen, K., & Green, P. (1991). A computational study of replicated clustering with an application to market segmentation. Decision Sciences, 22(5), 11241141.CrossRefGoogle Scholar
Hubert, L., & Arabie, P. (1985). Comparing partitions. Journal of Classification, 2(1), 193218.CrossRefGoogle Scholar
Isen, A.M. (1984). Toward understanding the role of affect in cognition. In Wyer, R.S. Jr., & Srull, T.K. Handbook of social cognition (pp. 179236). Hillsdale: Lawrence Erlbaum.Google Scholar
Ilog (2006). ILOG CPLEX 10.0 user’s manual. .Google Scholar
Jedidi, K., & DeSarbo, W.S. (1991). A stochastics multidimensional scaling methodology for the spatial representation of three-mode, three-way pick any/J data. Psychometrika, 56(3), 471494.CrossRefGoogle Scholar
John, D.R., & Sujan, M. (1990). Age differences in product categorization. Journal of Consumer Research, 16 March452460.CrossRefGoogle Scholar
Johnson, S.C. (1967). Hierarchical clustering schemes. Psychometrika, 32(3), 241254.CrossRefGoogle ScholarPubMed
Kalamas, M., Cleveland, M., Laroche, M., & Laufer, R. (2006). The critical role of congruency in prototypical brand extensions. Journal of Strategic Marketing, 14(3), 193210.CrossRefGoogle Scholar
Kariv, O., & Hakimi, S.L. (1979). An algorithmic approach to network location problems. II: the p-medians. SIAM Journal on Applied Mathematics, 37(3), 539560.CrossRefGoogle Scholar
Kaufman, L., & Rousseeuw, P.J. (2005). Finding groups in data: an introduction to cluster analysis. New York: Wiley.Google Scholar
Kelter, S., Cohen, R., Engel, D., List, G., & Stronher, H. (1977). The conceptual structure of aphasic and schizophrenic patients in a nonverbal sorting task. Journal of Psycholinguistic Research, 6(4), 279303.CrossRefGoogle Scholar
Klastorin, T. (1985). The p-median problem for cluster analysis: a comparative test using the mixture model approach. Management Science, 31(1), 8495.CrossRefGoogle Scholar
Köhn, H.-F., Steinley, D., & Brusco, M.J. (2010). The p-median as a tool for clustering psychological data. Psychological Methods, 15(1), 8795.CrossRefGoogle ScholarPubMed
Lakey, B., & Cassady, P.B. (1990). Cognitive processes in perceived social support. Personality Processes and Individual Differences, 59(2), 337343.Google Scholar
Langley, P. (1996). Elements of machine learning. San Francisco: Morgan Kaufmann.Google Scholar
Lee, M.D. (2001). Determining the dimensionality of mutli-dimensional scaling represetations for cognitive modeling. Journal of Mathematical Psychology, 45(1), 149166.CrossRefGoogle Scholar
Love, B.C. (2003). Concept learning. In Nadel, L. (Ed.), The encyclopedia of cognitive science (pp. 646652). London: Nature Publishing Group.Google Scholar
Maranzana, F.E. (1963). On the location of supply points to minimize transportation costs. IBM Systems Journal, 2(2), 129135.CrossRefGoogle Scholar
Medin, D.L., & Schaffer, M.M. (1978). Context theory of classification learning. Psychological Review, 85(3), 207238.CrossRefGoogle Scholar
Mervis, C.B., Catlin, J., & Rosch, E. (1976). Relationships among goodness-of-example, category norms, and word frequency. Bulletin of the Psychonomic Society, 7(3), 283294.CrossRefGoogle Scholar
Miller, G.A. (1969). A psychological method to investigate verbal concepts. Journal of Mathematical Psychology, 6(2), 169191.CrossRefGoogle Scholar
Mladenović, N., Brimberg, J., Hansen, P., & Moreno-Perez, J.A. (2007). The p-median problem: a survey of metaheuristic approaches. European Journal of Operational Research, 179(3), 927939.CrossRefGoogle Scholar
Mladenović, N., & Hansen, P. (1997). Variable neighborhood search. Computers & Operations Research, 24(11), 10971100.CrossRefGoogle Scholar
Perkins, W.S. (1993). The effects of experience and education on the organization of marketing knowledge. Psychology & Marketing, 10(3), 169183.CrossRefGoogle Scholar
Rao, V.R., & Katz, R. (1971). Alternative multidimensional scaling methods for large stimulus sets. Journal of Marketing Research, 8(4), 488494.CrossRefGoogle Scholar
Reed, S.K. (1972). Pattern recognition and categorization. Cognitive Psychology, 3(3), 382407.CrossRefGoogle Scholar
Reed, S.K. (1978). Category vs. item learning: implications for categorization models. Memory & Cognition, 6(6), 612621.CrossRefGoogle ScholarPubMed
Rosch, E., & Mervis, C.B. (1975). Family resemblances: studies in the internal structure of categories. Cognitive Psychology, 7(4), 573605.CrossRefGoogle Scholar
Rosch, E., Simpson, C., & Miller, R.S. (1976). Structural bases of typicality effects. Journal of Experimental Psychology. Human Perception and Performance, 2(4), 491502.CrossRefGoogle Scholar
Ross, B.H., & Murphy, G.L. (1999). Food for thought: cross-classification and category organization in a complex real-world domain. Cognitive Psychology, 38(4), 495554.CrossRefGoogle Scholar
Rousseeuw, P.J. (1987). Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20 November5365.CrossRefGoogle Scholar
Shugan, S.M. (1980). The cost of thinking. Journal of Consumer Research, 7(2), 99111.CrossRefGoogle Scholar
Simon, H.A. (1955). A behavioral model of rational choice. Quarterly Journal of Economics, 69(1), 99118.CrossRefGoogle Scholar
Smith, E.R., Fazio, R.H., & Cejka, M.A. (1996). Accessible attitudes influence categorization of multiply categorizable objects. Journal of Personality and Social Psychology, 71(5), 888898.CrossRefGoogle ScholarPubMed
Sujan, M., & Dekleva, C. (1987). Product categorization and inference making: some implications for comparative advertising. Journal of Consumer Research, 14(3), 372378.CrossRefGoogle Scholar
Takane, Y. (1980). Analysis of categorizing behavior using a quantification method. Behaviormetrika, 7(8), 7586.CrossRefGoogle Scholar
Tucker, L.R., & Messick, S.J. (1963). An individual differences model for multidimensional scaling. Psychometrika, 28(4), 333367.CrossRefGoogle Scholar
Urban, G.L., Hulland, J.S., & Weinberg, B.D. (1993). Premarket forecasting for new consumer durable goods: modeling categorization, elimination, and consideration phenomena. Journal of Marketing, 57(2), 4763.CrossRefGoogle Scholar
Vapnik, V. (1998). Statistical learning theory. New York: Wiley.Google Scholar
Ward, J.H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 38(301), 236244.CrossRefGoogle Scholar
Wedel, M., & Kamakura, W.A. (2000). Market segmentation: conceptual and methodological foundations. Norwell: Kluwer Academic.CrossRefGoogle Scholar
Yang, C.C., & Yang, C.C. (2007). Separating latent classes by information criteria. Journal of Classification, 24(2), 183203.CrossRefGoogle Scholar