Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-07T17:49:44.715Z Has data issue: false hasContentIssue false

Functional Parallel Factor Analysis for Functions of One- and Two-dimensional Arguments

Published online by Cambridge University Press:  01 January 2025

Ji Yeh Choi*
Affiliation:
McGill University
Heungsun Hwang
Affiliation:
McGill University
Marieke E. Timmerman
Affiliation:
University of Groningen
*
Correspondence should be made to JiYeh Choi andHeungsunHwang, Department of Psychology, McGill University, 1205 Dr. Penfield Avenue, Montreal, QC H3A 1B1 Canada. Email: [email protected]

Abstract

Parallel factor analysis (PARAFAC) is a useful multivariate method for decomposing three-way data that consist of three different types of entities simultaneously. This method estimates trilinear components, each of which is a low-dimensional representation of a set of entities, often called a mode, to explain the maximum variance of the data. Functional PARAFAC permits the entities in different modes to be smooth functions or curves, varying over a continuum, rather than a collection of unconnected responses. The existing functional PARAFAC methods handle functions of a one-dimensional argument (e.g., time) only. In this paper, we propose a new extension of functional PARAFAC for handling three-way data whose responses are sequenced along both a two-dimensional domain (e.g., a plane with x- and y-axis coordinates) and a one-dimensional argument. Technically, the proposed method combines PARAFAC with basis function expansion approximations, using a set of piecewise quadratic finite element basis functions for estimating two-dimensional smooth functions and a set of one-dimensional basis functions for estimating one-dimensional smooth functions. In a simulation study, the proposed method appeared to outperform the conventional PARAFAC. We apply the method to EEG data to demonstrate its empirical usefulness.

Type
Original Paper
Copyright
Copyright © 2017 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The authors wish to thank Jelena Ristic for her constructive comments on the analysis of EEG data.

The MATLAB code used in this paper is available upon request from the author Ji Yeh Choi.

References

Allen, G., (2013). Multi-way functional principal components analysis. In Computational advances in multi-sensor adaptive processing (CAMSAP), 2013 IEEE 5th International Workshop on. IEEE.CrossRefGoogle Scholar
Altamura, M., Goldberg, T. E., Elvevåg, B., Holroyd, T., Carver, F. W., Weinberger, D. R., et al. (2010). Prefrontal cortex modulation during anticipation of working memory demands as revealed by magnetoencephalography. Journal of Biomedical Imaging. doi:10.1155/2010/840416.CrossRefGoogle Scholar
Bernardi, M. S., Sangalli, L. M., Mazza, G., & Ramsay, J. O., (2016). A penalized regression model for spatial functional data with application to the analysis of the production of waste in Venice province. Stochastic Environmental Research and Risk Assessment. doi:10.1007/s00477-016-1237-3.CrossRefGoogle Scholar
Bollen, K.A., Kirby, J.B., Curran, P.J., Paxton, P.M., & Chen, F. 2007 Latent variable models under misspecification: Two-stage least squares (2SLS) and maximum likelihood (ML) estimators. Sociological Methods & Research, 36(1)4886.CrossRefGoogle Scholar
Braver, T.S., Cohen, J.D., Nystrom, L.E., Jonides, J., Smith, E.E., Noll, D.C., 1997 A parametric study of prefrontal cortex involvement in human working memory. Neuroimage 5(1)4962.CrossRefGoogle ScholarPubMed
Bro, R., 1997 PARAFAC. Tutorial and applications. Chemometrics and Intelligent Laboratory Systems 38(2)149171.CrossRefGoogle Scholar
Bro, R., Kiers, H.A.L., 2003 A new efficient method for determining the number of components in PARAFAC models. Journal of Chemometrics 17(5)274286.CrossRefGoogle Scholar
Carroll, J.D., Chang, J.J., 1970 Analysis of individual differences in multidimensional scaling via an N-way generalization of "Eckart-Young" decomposition. Psychometrika 35(3)283319.CrossRefGoogle Scholar
Cichocki, A., Zdunek, R.l., Phan, A.H., Amari, S., 2009 Nonnegative matrix and tensor factorizations: Applications to exploratory multi-way data analysis and blind source separation New York: Wiley.CrossRefGoogle Scholar
Cong, F., Lin, Q.H., Kuang, L.D., Gong, X.F., Astikainen, P., Ristaniemi, T., 2015 Tensor decomposition of EEG signals: A brief review. Journal of Neuroscience Methods 248, 5969.CrossRefGoogle ScholarPubMed
Cox, R.W., 1996 AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical Research 29(3)162173.CrossRefGoogle ScholarPubMed
Dauvier, B., Chevalier, N., Blaye, A., 2012 Using finite mixture of GLMs to explore variability in children’s flexibility in a task-switching paradigm. Cognitive Development 27(4)440454.CrossRefGoogle Scholar
Doppelmayr, M., Klimesch, W., Schwaiger, J., Stadler, W., Roehm, D., 2000 The time locked theta response reflects interindividual differences in human memory performance. Neuroscience Letters 278(3)141144.CrossRefGoogle ScholarPubMed
Folland, G.B., 1995 Introduction to partial differential equations Princeton, NJ: Princeton University Press.Google Scholar
Germond, L., Dojat, M., Taylor, C., Garbay, C., 2000 A cooperative framework for segmentation of MRI brain scans. Artificial Intelligence in Medicine 20(1)7793.CrossRefGoogle ScholarPubMed
Harshman, R. A., (1970). Foundations of the PARAFAC procedure: Models and conditions for an “explanatory” multimodal factor analysis. In UCLA Working Papers in Phonetics (Vol. 16, pp. 184).Google Scholar
Hastie, T., Tibshirani, R., Friedman, J., 2009 The elements of statistical learning: Data mining, inference, and prediction 2New York: Springer.CrossRefGoogle Scholar
Holter, N.S., Maritan, A., Cieplak, M., Fedoroff, N.V., Banavar, J.R., 2001 Dynamic modeling of gene expression data. Proceedings of the National Academy of Sciences 98(4)16931698.CrossRefGoogle ScholarPubMed
Hwang, H., 2009 Regularized generalized structured component analysis. Psychometrika 74(3)517530.CrossRefGoogle Scholar
Kamakura, W.A., Russell, G., 1989 A probabilistic choice model for market segmentation and elasticity structure. Journal of Marketing Research 26 379390.CrossRefGoogle Scholar
Klimesch, W., 1999 EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Research Reviews 29(2)169195.CrossRefGoogle Scholar
Kolda, T.G., Bader, B.W., 2009 Tensor decompositions and applications. SIAM Review 51(3)455500.CrossRefGoogle Scholar
Krause, C.M., Sillanmäki, L., Koivisto, M., Häggqvist, A., Saarela, C., Revonsuo, A. et.al 2000 Effects of electromagnetic field emitted by cellular phones on the EEG during a memory task. Neuroreport 11(4)761764.CrossRefGoogle ScholarPubMed
Kroonenberg, P. M., (1987). Multivariate and longitudinal data on growing children. Solutions using a three-mode principal component analysis and some comparison results with other approaches. In J. Janssen, F. Marcotorchino, & J. M. Proth (Eds.), Data analysis. The ins and outs of solving real problems (pp. 89–112). New York: Plenum.Google Scholar
Kroonenberg, P.M., De Leeuw, J., 1980 Principal component analysis of three-mode data by means of alternating least squares algorithms. Psychometrika 45(1)6997.CrossRefGoogle Scholar
Kroonenberg, P.M., Harshman, R.A., Murakami, T., 2009 Analysing three-way profile data using the Parafac and Tucker3 models illustrated with views on parenting. Applied Multivariate Research 13(1)541.CrossRefGoogle Scholar
Kruskal, J.B., 1977 Three-way arrays: Rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics. Linear Algebra and Its Applications 18(2)95138.CrossRefGoogle Scholar
Kuze, T., Goto, M., Ninomiya, K., Asano, K., Miyazawa, S., Munekata, H., 1985 etal A longitudinal study on development of adolescents’ social attitudes. Japanese Psychological Research 27(4)195205.CrossRefGoogle Scholar
Lei, P.W., 2009 Evaluating estimation methods for ordinal data in structural equation modeling. Quality and Quantity 43(3)495507.CrossRefGoogle Scholar
Li, J., Joshi, D., & Wang, J. Z., (2004). Stochastic modeling of volume images with a 3-D hidden Markov model. In Image Processing, 2004. ICIP’04. 2004 International Conference on. IEEE.CrossRefGoogle Scholar
Miwakeichi, F., Martınez-Montes, E., Valdés-Sosa, P.A., Nishiyama, N., Mizuhara, H., Yamaguchi, Y., 2004 Decomposing EEG data into space-time-frequency components using parallel factor analysis. NeuroImage 22(3)10351045.CrossRefGoogle ScholarPubMed
Mizuhara, H., Yonehara, E., & Gofuku, A., (2007). Parallel factor analysis can decompose human EEG during a finger movement task. In SICE, 2007 Annual Conference. IEEE.CrossRefGoogle Scholar
Mørup, M., (2005). Analysis of brain data—Using multi-way array models on the EEG. M.Sc. Thesis. Technical University of Denmark.Google Scholar
Mørup, M., Hansen, L.K., Herrmann, C.S., Parnas, J., Arnfred, S.M., 2006 Parallel factor analysis as an exploratory tool for wavelet transformed event-related EEG. NeuroImage 29(3)938947.CrossRefGoogle Scholar
Nazarpour, K., Sanei, S., Shoker, L., & Chambers, J. A., (2006). Parallel space-time-frequency decomposition of EEG signals for brain computer interfacing. In Signal processing conference, 2006 14th European. IEEE.Google Scholar
Oort, F.J., 2001 Three-mode models for multivariate longitudinal data. British Journal of Mathematical and Statistical Psychology 54(1)4978.CrossRefGoogle ScholarPubMed
Pepper, D.W., Heinrich, J.C., 2006 The finite element method: Basic concepts and applications New York: Taylor & Francis.Google Scholar
Ramsay, J.O., Hooker, G., Graves, S., 2009 Functional data analysis with R and MATLAB New York: Springer.CrossRefGoogle Scholar
Ramsay, J.O., Ramsay, T.O., Sangalli, L.M., 2011 Spatial functional data analysis. Recent advances in functional data analysis and related topics Berlin: Springer 269275.CrossRefGoogle Scholar
Ramsay, J.O., Silverman, B.W., 2005 Functional data analysis 2New York: Springer.CrossRefGoogle Scholar
Ramsay, T.O., 2002 Spline smoothing over difficult regions. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 64(2)307319.CrossRefGoogle Scholar
Reis, M.M., Ferreira, M., 2002 PARAFAC with splines: A case study. Journal of Chemometrics 16(8–10)444450.CrossRefGoogle Scholar
Rosenberg, S., 1997 The Laplacian on a Riemannian manifold: An introduction to analysis on manifolds Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Ruppert, D., Carroll, R.J., 2000 Spatially-adaptive penalties for spline fitting. Australian & New Zealand Journal of Statistics 42(2)205223.CrossRefGoogle Scholar
Sands, R., Young, F.W., 1980 Component models for three-way data: An alternating least squares algorithm with optimal scaling features. Psychometrika 45(1)3967.CrossRefGoogle Scholar
Sangalli, L.M., Ramsay, J.O., Ramsay, T.O., 2013 Spatial spline regression models. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 75(4)681703.CrossRefGoogle Scholar
Sauseng, P., Klimesch, W., Schabus, M., Doppelmayr, M., 2005 Fronto-parietal EEG coherence in theta and upper alpha reflect central executive functions of working memory. International Journal of Psychophysiology 57(2)97103.CrossRefGoogle ScholarPubMed
Scott-Hayward, L.A.S., MacKenzie, M.L., Donovan, C.R., Walker, C.G., Ashe, E., 2014 Complex region spatial smoother (CReSS). Journal of Computational and Graphical Statistics 23(2)340360.CrossRefGoogle Scholar
Sharbrough, F., Chatrian, G.E., Lesser, R.P., Lüders, H., Nuwer, M., Picton, T.W., 1991 American Electroencephalographic Society guidelines for standard electrode position nomenclature. Journal of Clinical Neurophysiology 8(2)200202.Google Scholar
Stegeman, A., Sidiropoulos, N.D., 2007 On Kruskal’s uniqueness condition for the Candecomp/Parafac decomposition. Linear Algebra and Its Applications 420(2)540552.CrossRefGoogle Scholar
Thirion, B., Faugeras, O., 2003 Dynamical components analysis of fMRI data through kernel PCA. NeuroImage 20(1)3449.CrossRefGoogle ScholarPubMed
Tian, T.S., 2010 Functional data analysis in brain imaging studies. Frontiers in Psychology 1, 111.CrossRefGoogle ScholarPubMed
Timmerman, M.E., Kiers, H.A.L., 2002 Three-way component analysis with smoothness constraints. Computational Statistics & Data Analysis 40(3)447470.CrossRefGoogle Scholar
Tucker, L.R., 1966 Some mathematical notes on three-mode factor analysis. Psychometrika 31(3)279311.CrossRefGoogle ScholarPubMed
Valdes-Sosa, P.A., 2004 Spatio-temporal autoregressive models defined over brain manifolds. Neuroinformatics 2(2)239250.CrossRefGoogle ScholarPubMed
Weis, M., Romer, F., Haardt, M., Jannek, D., & Husar, P., (2009). Multi-dimensional space-time-frequency component analysis of event related EEG data using closed-form PARAFAC. Paper presented at the 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.CrossRefGoogle Scholar
Wilderjans, T.F., Ceulemans, E., 2013 Clusterwise Parafac to identify heterogeneity in three-way data. Chemometrics and Intelligent Laboratory Systems 129, 8797.CrossRefGoogle Scholar
Wood, S.N., Bravington, M.V., Hedley, S.L., 2008 Soap film smoothing. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 70(5)931955.CrossRefGoogle Scholar
Wood, S.A., Jiang, W., Tanner, M., 2002 Bayesian mixture of splines for spatially adaptive nonparametric regression. Biometrika 89(3)513528.CrossRefGoogle Scholar
Xiao, G., Wang, X., Khodursky, A.B., 2011 Modeling three-dimensional chromosome structures using gene expression data. Journal of the American Statistical Association 106(493)61723134274.CrossRefGoogle ScholarPubMed
Zhang, X.L., Begleiter, H., Porjesz, B., Wang, W., Litke, A., 1995 Event related potentials during object recognition tasks. Brain Research Bulletin 38(6)531538.CrossRefGoogle ScholarPubMed
Zienkiewicz, O.C., 1971 The finite element method in engineering science London: McGraw-Hill.Google Scholar
Zienkiewicz, O.C., Taylor, R.L., 2000 The finite element method Oxford: Butterworth-Heinemann.Google Scholar